Breast cancer incidence increases in women receiving combined estrogen and progesterone therapy. Breast tumors show increased expression of the glucose transporter GLUT1. We determined the effect of these hormones on GLUT1-4 expression and deoxyglucose transport in ZR-75-1 breast cancer cells. Immunoblotting, immunocytochemistry, flow cytometry, and RT-PCR showed that GLUT1 expression is up-regulated by progesterone and, to a greater degree, combined therapy. GLUT2 expression is unaffected by hormonal treatment. GLUT3 protein and RNA is up-regulated by progesterone and combined therapy, and GLUT4 protein expression is up-regulated by all hormonal treatments. Deoxyglucose transport studies revealed the presence of three transport components with characteristics corresponding to GLUT1/4, GLUT2, and GLUT3. 17beta-Estradiol produced a slight increase in transport at the Michaelis constant (Km) corresponding to GLUT3. Progesterone produced a small increase in transport at the Km corresponding to GLUT1/4, and combined 17beta-estradiol and progesterone produced a small increase in transport at the Km corresponding to GLUT3 and a large increase in transport at the Km corresponding to GLUT1/4. This indicates that 17beta-estradiol and progesterone differentially regulate GLUT1-4 expression and that these changes correlate to changes in glucose uptake. We postulate that combined hormone replacement therapy provides a survival advantage to developing ZR-75 breast cancer cells.
Estrogen replacement therapy and other unopposed estrogen treatments increase the incidence of endometrial abnormalities, including cancer. However, this effect is counteracted by the co-administration of progesterone. In the endometrium, glucose transporter (GLUT) expression and glucose transport are known to fluctuate throughout the menstrual cycle. Here, we determined the effect of estrogen and progesterone on the expression of GLUT1-4 and on the transport of deoxyglucose in Ishikawa endometrial cancer cells. Cells were incubated with estrogen, progesterone or combined estrogen and progesterone for 24 h and the effect on the expression of GLUT1-4 and on deoxyglucose transport was determined. We show that GLUT1 expression is upregulated by estrogen and progesterone individually, but that combined estrogen and progesterone treatment reverses this increase. Hormonal treatments do not affect GLUT2, GLUT3 or GLUT4 expression. Transport studies demonstrate that estrogen increases deoxyglucose transport at Michaelis-Menten constants (K m s) corresponding to GLUT1/4, an effect which disappears when progesterone is added concomitantly. These data demonstrate that different hormonal treatments differentially regulate GLUT expression and glucose transport in this endometrial cancer cell line. This regulation mirrors the role played by estrogen and progesterone on the incidence of cancer in this tissue and suggests that GLUT1 may be utilized by endometrial cancer cells to fuel their demand for increased energy requirement.
Increased glucose uptake as a principal energy source is a requirement for the continued survival of tumour cells. Facilitative glucose transporter-1 (GLUT1) and -3 (GLUT3) have been previously shown to be present and regulated in breast cancer cells and are associated with poor patient prognosis. In cancer cells, the cAMP secondary messenger pathway is known to potentiate described glucose transporter activators and regulate cell fate. However, no regulation of the glucose transporters in breast cancer cells by cAMP has previously been examined. Herein, we determined in the well-characterized breast cancer cell line ZR-75, if the cAMP analogue 8-br-cAMP was capable of regulating GLUT1 and GLUT3 expression and thus glucose uptake. We demonstrated that 8-br-cAMP transiently up-regulates GLUT3 mRNA levels. The use of actinomycin-D and the cloning of 1,200 bp upstream of the human GLUT3 promoter demonstrated that this regulation was transcriptional. Immunocytochemistry and Western blotting confirmed that the increase in mRNA was reflected by an increase in protein levels. No notable regulation of GLUT1 in the presence of 8-br-cAMP was detected. Finally, we determined using the non-metabolizable glucose analogue 2-DOG if this up-regulation in GLUT3 increased glucose uptake. We observed the presence of two uptake components, one corresponding to the Km of GLUT1/4 and the other to GLUT3. A doubling in the uptake velocity was observed only at the Km corresponding to GLUT3. In conclusion, we demonstrate and characterize for the first time, an up-regulation of GLUT3 mRNA, protein and glucose uptake by the cAMP pathway in breast cancer cells.
Urinary pyridinoline and deoxypyridinoline excretion decreases early in hormone replacement therapy, reflecting a decrease in the bone resorption rate, and no correlation was observed with the bone mass evaluated by densitometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.