The demand for an efficient therapy for alopecia disease has fueled the hair research field in recent decades. However, despite significant improvements in the knowledge of key processes of hair follicle biology such as genesis and cycling, translation into hair follicle replacement therapies has not occurred. Great expectation has been recently put on hair follicle bioengineering, which is based on the development of fully functional hair follicles with cycling activity from an expanded population of hair‐inductive (trichogenic) cells. Most bioengineering approaches focus on in vitro reconstruction of folliculogenesis by manipulating key regulatory molecular/physical features of hair follicle growth/cycling in vivo. Despite their great potential, no cell‐based product is clinically available for hair regeneration therapy to date. This is mainly due to demanding issues that still hinder the functionality of cultured human hair cells. The present review comprehensively compares emergent strategies using different cell sources and tissue engineering approaches, aiming to successfully achieve a clinical cure for hair loss. The hurdles of these strategies are discussed, as well as the future directions to overcome the obstacles and fulfill the promise of a “hairy” feat.
BACKGROUND Appropriate storage of human hair follicle (HF) grafts during follicular unit excision (FUE) is crucial toward successful hair shaft implantation. Several commercial storage solutions are currently used to ensure ex vivo maintenance of follicular grafts viability and trichogenicity. However, quantitative experimental evidence demonstrating molecular changes in HF cells associated with the usage of different storage solutions is largely missing. OBJECTIVE To identify gene expression changes in HF cells caused by ex vivo storage of hair grafts in different preservation conditions. METHODS The authors performed gene expression analysis in dermal papilla (DP) isolated from HF stored under different temperatures and solutions. The expression signature of key genes controlling hair growth and cycling, apoptosis, inflammation, and senescence was assessed for (1) chilled versus room temperature (RT) and (2) DP cell medium, saline, Hypothermosol, platelet-rich plasma, and ATPv-supplemented saline. RESULTS The authors found chilled versus RT to prevent inflammatory cytokine signaling. Under chilled conditions, ATPv-supplemented saline was the best condition to preserve the expression of the trichogenic genes HEY1 and LEF1. CONCLUSION Data disclose DP gene expression analysis as a useful methodology to ascertain the efficacy of preserving solutions and elucidate about the best currently available option for FUE clinical practice.
Different animal models have been used for hair research and regeneration studies based on the similarities between animal and human skins. Primary knowledge on hair follicle (HF) biology has arisen from research using mouse models baring spontaneous or genetically engineered mutations. These studies have been crucial for the discovery of genes underlying human hair cycle control and hair loss disorders. Yet, researchers have become increasingly aware that there are distinct architectural and cellular features between the mouse and human HFs, which might limit the translation of findings in the mouse models. Thus, it is enticing to reason that the spotlight on mouse models and the unwillingness to adapt to the human archetype have been hampering the emergence of the long-awaited human hair loss cure. Here, we provide an overview of the major limitations of the mainstream mouse models for human hair loss research, and we underpin a future course of action using human cell bioengineered models and the emergent artificial intelligence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.