Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.
Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease.
Deciphering the genetic landscape of Alzheimer disease (AD) is essential to define the pathophysiological pathways involved and to successfully translate genomics to potential tailored medical care. To generate the most complete knowledge of the AD genetics, we developed through the European Alzheimer Disease BioBank (EADB) consortium a discovery meta-analysis of genome-wide association studies (GWAS) based on a new large case-control study and previous GWAS (in total 39,106 clinically diagnosed cases, 46,828 proxy-AD cases and 401,577 controls) with the most promising signals followed-up in independent samples (18,063 cases and 23,207 controls). In addition to 34 known AD loci, we report here the genome-wide significant association of 31 new loci with the risk of AD. Pathway-enrichment analyses strongly indicated the involvement of gene sets related to amyloid and Tau, but also highlighted microglia, in which increased gene expression corresponds to more significant AD risk. In addition, we successfully prioritized candidate genes in the majority of our new loci, with nine being primarily expressed in microglia. Finally, we observed that a polygenic risk score generated from this new genetic landscape was strongly associated with the risk of progression from mild cognitive impairment (MCI) to dementia (4,609 MCI cases of whom 1,532 converted to dementia), independently of age and the APOE e4 allele.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.