The corollaries of the obesity epidemic that plagues developed societies are malnutrition and resulting biochemical imbalances. Low levels of essential n-3 polyunsaturated fatty acids (n-3 PUFAs) have been linked to neuropsychiatric diseases, but the underlying synaptic alterations are mostly unknown. We found that lifelong n-3 PUFAs dietary insufficiency specifically ablates long-term synaptic depression mediated by endocannabinoids in the prelimbic prefrontal cortex and accumbens. In n-3-deficient mice, presynaptic cannabinoid CB(1) receptors (CB(1)Rs) normally responding to endocannabinoids were uncoupled from their effector G(i/o) proteins. Finally, the dietary-induced reduction of CB(1)R functions in mood-controlling structures was associated with impaired emotional behavior. These findings identify a plausible synaptic substrate for the behavioral alterations caused by the n-3 PUFAs deficiency that is often observed in western diets.
BackgroundThe purpose of the study was to evaluate the effects of krill oil (KO) on cognition and depression-like behaviour in rats.MethodsCognition was assessed using the Aversive Light Stimulus Avoidance Test (ALSAT). The Unavoidable Aversive Light Stimulus (UALST) and the Forced Swimming Test (FST) were used to evaluate the antidepressant-like effects of KO. Imipramine (IMIP) was used as the antidepressant reference substance.ResultsAfter 7 weeks of KO intake, both males and females treated with KO were significantly better in discriminating between the active and the inactive levers in the ALSAT from day 1 of training (p<0.01). Both KO and IMIP prevented resignation/depression on the third day in the UALST. Similarly, a shorter immobility time was observed for the KO and IMIP groups compared to the control in the FST (p<0.001). These data support a robust antidepressant-like potential and beneficial cognitive effect of KO. Changes in expression of synaptic plasticity-related genes in the prefrontal cortex and hippocampus were also investigated. mRNA for brain-derived neurotrophic factor (Bdnf) was specifically upregulated in the hippocampus of female rats receiving 7 weeks of KO supplementation (p=0.04) and a similar trend was observed in males (p=0.08). Males also exhibited an increase in prefrontal cortex expression of Arc mRNA, a key protein in long-term synaptic plasticity (p=0.05). IMIP induced clear effects on several plasticity related genes including Bdnf and Arc.ConclusionsThese results indicate that active components (eicosapentaenoic acid, docosahexaenoic acid and astaxanthin) in KO facilitate learning processes and provide antidepressant-like effects. Our findings also suggest that KO might work through different physiological mechanisms than IMIP.
The acquisition of a conditioned response to a stimulus when it is paired with a reinforcer is retarded if the stimulus has previously been repeatedly pre-exposed in the absence of the reinforcer. This effect, called latent inhibition, has previously been found to be insensitive to lesions of the medial prefrontal cortex (mPFC) in rats. Using an on-baseline conditioned emotional response procedure, which is especially sensitive to small variations in the absolute magnitude of latent inhibition, we found increased latent inhibition following excitotoxic lesions of the mPFC (Experiment 1) or the ventral mPFC alone (Experiment 2) as compared with sham-operated control rats. Lesions restricted to the dorsal mPFC, however, were without effect (Experiment 2). These results are consistent with those of experiments employing another type of interference procedure, extinction. Together, these findings suggest that when different contingencies between a stimulus and a reinforcer are established in separate learning phases, lesions to the ventral mPFC result in increased interference between first-learned and second-learned contingencies. As a consequence, retrieval of the second-learned contingency is impaired, and performance is dominated by the first-learned contingency. These findings are discussed in light of the use of latent inhibition to model cognitive deficits in schizophrenia.
Body awareness refers to the individual ability to process signals originating from within the body, which provide a mapping of the body’s internal landscape (interoception) and its relation with space and movement (proprioception). The present study aims to evaluate psychometric properties and validate in French two self-report measures of body awareness: the Postural Awareness Scale (PAS), and the last version of the Multidimensional Assessment of Interoceptive Awareness questionnaire (version 2, MAIA-2). We collected data in a non-clinical, adult sample (N = 308; 61% women, mean age 35 ± 12 years) using online survey, and a subset of the original sample (n = 122; 62% women, mean age 44 ± 11 years) also completed the retest control. Factor analyses and reliability analyses were conducted. Construct validity of the PAS and the MAIA-2 were examined by testing their association with each other, and with self-report measures of personality (Big Five Inventory), alexithymia (Toronto Alexithymia Scale) and dispositional trait mindfulness (Freiburg Mindfulness Inventory). Factor analyses of the PAS supported the same two-factor structure as previously published versions (in other languages). For the MAIA-2, factor analyses suggested that a six-factor structure, excluding Not-Worrying and Not-Distracting factors, could successfully account for a common general factor of self-reported interoception. We found satisfactory internal consistency, construct validity, and reliability over time for both the PAS and the MAIA-2. Altogether, our findings suggest that the French version of the PAS and the MAIA-2 are reliable self-report tools to assess both components of body awareness (proprioception and interoception dimension, respectively).
The human body is constantly exposed to the risk of traumatic lesions. Chlorella is a green microalgae enriched with nutrients, vitamins, minerals and chlorophyll. In some communities, Chlorella is a traditional medicinal plant used for the management of inflammation-related diseases. ROQUETTE Chlorella sp. (RCs) was investigated by oral administration (125, 250 and 500 mg/kg) and cutaneous application (2.5, 5.0 and 10.0%) to evaluate its impact in two dermatological disorder models in mice: skin inflammation and wound healing. For skin inflammation, it was administered during 14 days starting one week before the induction of chronic skin inflammation by repeated cutaneous application of 12-Otetradecanoylphorbol 13-acetate (TPA). For wound healing the microalgae was administered by topical application after scarification of the skin until complete wound healing. Results indicated that oral and topical administrations of the two higher doses of RCs had significant effects on macroscopic score of skin inflammation with an efficient effect on microscopic score with cutaneous application. The microalgae had also efficient effect on healing process and duration of wound healing for both administration routes and particularly at the two highest doses of RCs. These findings suggest that administration of RCs by both oral and topical routes appeared to have beneficial effects on skin lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.