In the stochastic knapsack problem, we are given a set of items each associated with a probability distribution on sizes and a profit, and a knapsack of unit capacity. The size of an item is revealed as soon as it is inserted into the knapsack, and the goal is to design a policy that maximizes the expected profit of items that are successfully inserted into the knapsack. The stochastic knapsack problem is a natural generalization of the classical knapsack problem, and arises in many applications, including bandwidth allocation, budgeted learning, and scheduling. An adaptive policy for stochastic knapsack specifies the next item to be inserted based on observed sizes of the items inserted thus far. The adaptive policy can have an exponentially large explicit description and is known to be PSPACE-hard to compute. The best known approximation for this problem is a (3 + є)-approximation for any є > 0. Our first main result is a relaxed PTAS (Polynomial Time Approximation Scheme) for the adaptive policy, that is, for any є > 0, we present a poly-time computable (1+є)-approximate adaptive policy when knapsack capacity is relaxed to 1+є. At a high-level, the proof is based on transforming an arbitrary collection of item size distributions to canonical item size distributions that admit a compact description. We then establish a coupling that shows a (1+є)-approximation can be achieved for the original problem by a canonical policy that makes decisions at each step by observing events drawn from the sample space of canonical size distributions. Finally, we give a mechanism for approximating the optimal canonical policy. Our second main result is an (8/3 + є)-approximate adaptive policy for any є > 0 without relaxing the knapsack capacity, improving the earlier (3+є)-approximation result. Interestingly, we obtain this result by using the PTAS described above. We establish an existential result that the optimal policy for the knapsack with capacity 1 can be folded to get a policy with expected profit 3OPT/8 for a knapsack with capacity (1-є), with capacity relaxed to 1 only for the first item inserted. We then use our PTAS result to compute the (1 + є)-approximation to such policy. Our techniques also yield a relaxed PTAS for nonadaptive policies. Finally, we also show that our ideas can be extended to yield improved approximation guarantees for multidimensional and fixed set variants of the stochastic knapsack problem. Disciplines Computer Sciences AbstractIn the stochastic knapsack problem, we are given a set of items each associated with a probability distribution on sizes and a profit, and a knapsack of unit capacity. The size of an item is revealed as soon as it is inserted into the knapsack, and the goal is to design a policy that maximizes the expected profit of items that are successfully inserted into the knapsack. The stochastic knapsack problem is a natural generalization of the classical knapsack problem, and arises in many applications, including bandwidth allocation, budgeted learning, and schedulin...
We study social welfare in one-sided matching markets where the goal is to efficiently allocate n items to n agents that each have a complete, private preference list and a unit demand over the items. Our focus is on allocation mechanisms that do not involve any monetary payments.We consider two natural measures of social welfare: the ordinal welfare factor which measures the number of agents that are at least as happy as in some unknown, arbitrary benchmark allocation, and the linear welfare factor which assumes an agent's utility linearly decreases down his preference lists, and measures the total utility to that achieved by an optimal allocation. We analyze two matching mechanisms which have been extensively studied by economists. The first mechanism is the random serial dictatorship (RSD) where agents are ordered in accordance with a randomly chosen permutation, and are successively allocated their best choice among the unallocated items. The second mechanism is the probabilistic serial (PS) mechanism of Bogomolnaia and Moulin [8], which computes a fractional allocation that can be expressed as a convex combination of integral allocations. The welfare factor of a mechanism is the infimum over all instances. For RSD, we show that the ordinal welfare factor is asymptotically 1/2, while the linear welfare factor lies in the interval [.526, 2/3]. For PS, we show that the ordinal welfare factor is also 1/2 while the linear welfare factor is roughly 2/3. To our knowledge, these results are the first non-trivial performance guarantees for these natural mechanisms. Abstract. We study social welfare in one-sided matching markets where the goal is to efficiently allocate n items to n agents that each have a complete, private preference list and a unit demand over the items. Our focus is on allocation mechanisms that do not involve any monetary payments. We consider two natural measures of social welfare: the ordinal welfare factor which measures the number of agents that are at least as happy as in some unknown, arbitrary benchmark allocation, and the linear welfare factor which assumes an agent's utility linearly decreases down his preference lists, and measures the total utility to that achieved by an optimal allocation. We analyze two matching mechanisms which have been extensively studied by economists. The first mechanism is the random serial dictatorship (RSD) where agents are ordered in accordance with a randomly chosen permutation, and are successively allocated their best choice among the unallocated items. The second mechanism is the probabilistic serial (PS) mechanism of Bogomolnaia and Moulin [8], which computes a fractional allocation that can be expressed as a convex combination of integral allocations. The welfare factor of a mechanism is the infimum over all instances. For RSD, we show that the ordinal welfare factor is asymptotically 1/2, while the linear welfare factor lies in the interval [.526, 2/3]. For PS, we show that the ordinal welfare factor is also 1/2 while the linear welfare factor...
With the advent of social networks such as Facebook and LinkedIn, and online offers/deals web sites, network externalties raise the possibility of marketing and advertising to users based on influence they derive from their neighbors in such networks. Indeed, a user's knowledge of which of his neighbors "liked" the product, changes his valuation for the product. Much of the work on the mechanism design under network externalities has addressed the setting when there is only one product. We consider a more natural setting when there are multiple competing products, and each node in the network is a unit-demand agent.We first consider the problem of welfare maximization under various different types of externality functions. Specifically we get a O(log n log(nm)) approximation for concave externality functions, a 2 O(d) -approximation for convex externality functions that are bounded above by a polynomial of degree d, and we give a O(log 3 n)-approximation when the externality function is submodular. Our techniques involve formulating non-trivial linear relaxations in each case, and developing novel rounding schemes that yield bounds vastly superior to those obtainable by directly applying results from combinatorial welfare maximization.We then consider the problem of Nash equilibrium where each node in the network is a player whose strategy space corresponds to selecting an item. We develop tight characterization of the conditions under which a Nash equilibrium exists in this game. Lastly, we consider the question of pricing and revenue optimization when the users in the network are selfish agents, and their private information is the vector of valuations for different items. We show that for single parameter settings (when an agents's intrinsic valuation for every item can be described using one parameter), all our approximation results for welfare maximization extend to revenue maximization. For the multi-parameter setting, we design an O(1)-approximate revenue optimal mechanism for IID agents, when the action of a single agent does not affect the externality enjoyed by remaining agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.