Internal stress is often encountered in fixedfixed beam based devices with micron or sub-micron length scales during device fabrication or operation. In this paper, we have investigated the effects of internal stress on static and dynamic characteristics of an electrostatically actuated cylindrical beam. The beam has been modelled using Euler-Bernoulli theory including the nonlinearities due to beam stretching and electrostatic forcing. The analysis has been carried out by solving the governing differential equations using a Galerkin based multi-modal reduced order modelling technique. A standard collocation based numerical scheme has also been used to confirm the results of the reduced order method. Our study shows that internal stress significantly influences the static and dynamic characteristics of the beam. We also find that, when compressive internal stress is high, it is important to include higher modes in the reduced order model. A design technique to achieve high resonant frequency stability under temperature variation, for electrostatically actuated beam oscillators, has also been proposed as a result of this investigation.
We study the nonlinear coupling between orthogonal flexural modes of doubly clamped InAs nanowire resonators. The two orthogonal modes are formed by the symmetry breaking and lifting of degeneracy of the fundamental mode. The presence of a Duffing nonlinearity emerges when a mode is driven to large amplitudes.In this regime the modes are coupled due to the tension induced from the large amplitude of oscillations and is reflected in the hysteretic response of the mode that is not strongly driven. We study the driven-driven response of the mechanical modes to elucidate the role of nonlinear mode coupling in such mechanical resonators. The dynamics of the coupled modes studied here could prove useful in technological applications such as nanowire based vectorial force sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.