Two-dimensional (2D) transitional metal oxides (TMOs) are an attractive class of materials due to the combined advantages of high active surface area, enhanced electrochemical properties, and stability. Among the 2D TMOs, 2D tungsten oxide (WO) nanosheets possess great potential in electrochemical applications, particularly in electrochromic (EC) devices. However, feasible production of 2D WO nanosheets is challenging due to the innate 3D crystallographic structure of WO. Here we report a novel solution-phase synthesis of 2D WO nanosheets through simple oxidation from 2D tungsten disulfide (WS) nanosheets exfoliated from bulk WS powder. The complete conversion from WS into WO was confirmed through crystallographic and elemental analyses, followed by validation of the 2D WO nanosheets applied in the EC device. The EC device showed color modulation of 62.57% at 700 nm wavelength, which is 3.43 times higher than the value of the conventional device using bulk WO powder, while also showing enhancement of ∼46.62% and ∼62.71% in switching response-time (coloration and bleaching). The mechanism of enhancement was rationalized through comparative analysis based on the thickness of the WO components. In the future, 2D WO nanosheets could also be used for other promising applications such as sensors, catalysis, thermoelectric, and energy conversion.
The insufficient strategies to improve electronic transport, the poor intrinsic chemical activities, and limited active site densities are all factors inhibiting MXenes from their electrocatalytic applications in terms of hydrogen production. Herein, these limitations are overcome by tunable interfacial chemical doping with a nonmetallic electron donor, i.e., phosphorization through simple heattreatment with triphenyl phosphine (TPP) as a phosphorous source in 2D vanadium carbide MXene. Through this process, substitution, and/or doping of phosphorous occurs at the basal plane with controllable chemical compositions (3.83-4.84 at%). Density functional theory (DFT) calculations demonstrate that the PC bonding shows the lowest surface formation energy (ΔG Surf ) of 0.027 eV Å −2 and Gibbs free energy (ΔG H ) of -0.02 eV, whereas others such as P-oxide and PV (phosphide) show highly positive ΔG H . The P3-V 2 CT x treated at 500 °C shows the highest concentration of PC bonds, and exhibits the lowest onset overpotential of -28 mV, Tafel slope of 74 mV dec −1 , and the smallest overpotential of −163 mV at 10 mA cm −2 in 0.5 m H 2 SO 4 . The first strategy for electrocatalytically accelerating hydrogen evolution activity of V 2 CT x MXene by simple interfacial doping will open the possibility of manipulating the catalytic performance of various MXenes.
We report a strategy to turn non-electrocatalytic 2D-titanium carbide MXene (Ti2CTx) into a highly active electrocatalyst by nitridation with sodium amide (NaNH2).
Direct attachment of MoS2 to materials with carbonaceous architecture remains a major challenge because of non-intimate contact between the carbonaceous materials and active MoS2 material. In this study, we report a new unique synthetic method to produce a new type of hybrid nanostructure of MoS2-CNTs composites. We developed a novel strategy for the synthesis of cylindrical MoS2 directly grown on CNT composites without the use of any other additives, exhibiting superior electrochemical performance as the anode material of lithium-ion batteries via a microwave irradiation technique. We adopted a simple step-by-step method: coating sulfur on CNTs and then reaction with a Mo source to synthesize hybrid cylindrical nanostructures of the MoS2-CNT composite. X-ray diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy analyses demonstrated that the as-synthesized MoS2-CNTs possessed a hybrid nanostructure, in which MoS2 sheets were well attached to the CNTs. The directly attached MoS2 sheets on the CNTs showed superior electrochemical performance as anode materials in a lithium-ion battery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.