Objective: The purpose of this study was to develop an in situ ocular gel of ofloxacin which aimed to prolong corneal residence time while controlling drug release. Method: In situ gelling solutions were prepared from Poloxamer 407, a temperature-sensitive gelling polymer and to which, mucoadhesive polymers such as hydroxypropyl methyl cellulose 15 cps and polyvinyl alcohol (PVA) were included to provide corneal adhesion. Drug incorporated gels were prepared and evaluated for their appearance, pH, gelation temperature, and in vitro drug release studies. Results: Incorporation of the drug into the formulation increased the gelation temperature while the addition of mucoadhesive polymers decreased the gelation temperature. Increasing the concentration of bio-adhesive polymers retarded the release of ofloxacin from the poloxamer solutions and drug release was sustained over a period of 9 h. PVA had no significant effect on the gelation temperature and could not sustain the drug release for a longer duration. The in vitro release profiles of the drug from all the formulations could be best expressed by Higuchi’s equation which indicated that gels followed matrix diffusion process and drug release from gel formulations followed first-order process. Conclusion: The results showed that the developed system would be promising in the treatment of ocular infections with the combined advantages of ease of administration, the accuracy of dosing, increased bioavailability, and prolonged retention time.
Background: Clarithromycin is a macrolide antibiotic used in acne treatment, but it has poor solubility, which decreases its permeability through lipid barriers such as skin. Nanostructured lipid carriers can enhance the permeability of clarithromycin through the skin, thus improving its potential for controlling acne. Aim: To formulate and evaluate Nanostructured lipid carriers of clarithromycin for topical delivery in acne treatment Methods: Nanostructured lipid carriers were prepared by emulsification and ultrasonication methods using lipids such as glycerol monostearate and oleic with poloxamer 188 as stabilizer. These nano-carriers were optimized with the help of the Quality by Design (QbD) approach employing Design-Expert® software. The nanoparticles were characterized for particle size analysis, zeta potential, drug-excipient compatibility, entrapment efficiency, and surface morphology by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The nano-carriers were also investigated for in vitro drug release and ex vivo permeation through excised goat skin. The optimized formulation was incorporated into topical carbopol gel base, formulated and examined for pH, viscosity, spreadability, in vitro drug release, ex vivo permeation, and stability under accelerated conditions. Results: The average particle size of the optimized nanoparticles was 164.8 nm, and zeta potential was -39.2 mV. FTIR studies showed that drug and lipids are compatible with each other. The morphology study by SEM and TEM showed spherical shaped particles. The entrapment efficiency of the optimized formulation was found to be 88.16%. In vitro drug release studies indicated sustained release from the formulation due to diffusion through the lipid matrix of the particles. The ex vivo permeation study using goat skin produced greater permeation from the NLC gel (89.5%) than marketed gel (65%) due to the lipid solubility of the nanoparticles in the skin. The formulation was stable under accelerated conditions. Conclusion: The optimized formulation can be considered as promising nano-carriers suitable for the sustained release of clarithromycin into the skin for effective control of acne.
The main aim of this study was to formulate and evaluate the performances off loating In situ gel pantoprazole. Polymers such as sodium alginate and gellangum were used as gelling agents. Sodium citrate and calcium chloride were used for cross linking, whereas calcium carbonate was used as a floating agent. FTIR studies confirmed compatibility between drugs and polymers. The pH of the formulations ranged form of 6.9-7.3, the drug content was found to be between 75.36% to 87.69%, floating lag time was less than 1 min, and floating duration was more than 12h. It was observed that the concentration of polymers increased gelling ability, viscosity, gel strength, and water absorption by the gel. In vitro drug release showed results in the range of 77.80% to 87.12%, at 12 h for all the formulations. The release of the drug was found to decrease with a rise in the concentration of the polymer. All the formulations followed Zero Order kinetics. The drug release mechanism followed the Higuchi diffusion model based on the values of the regression coefficient. Thus an oral In situ floating gelling systems of pantoprazole reduce dosing frequency and enhance the residence time of the drug in the stomach.
Objective: The aim of the present work was to formulate and evaluate proniosomes of the poorly soluble drug, acyclovir incorporated in mucoadhesive polymeric films for improved buccal mucosal permeability of the drug while achieving prolonged release. Methods: Acyclovir was formulated as proniosomes using Span 60 and cholesterol. The prepared proniosomes were loaded into mucoadhesive polymeric films prepared with varying quantities of carbopol 934P and HPMC K15M. The proniosome incorporated films were evaluated for physicomechanical characters, mucoadhesion, swelling index, drug content, in vitro drug release and ex vivo permeation through porcine buccal mucosa. Results: Hydration of the proniosomes produced spherical vesicles or niosomes, which was confirmed by Scanning Electron Microscopy. The optimized formulation selected on the basis of vesicle size, entrapment efficiency PDI, Zetz potential and in vitro drug release was selected for incorporation into mucoadhesive polymeric films. All the films showed excellent physicomechanical characters. Formulations with higher proportions of carbopol produced slower in vitro drug release. The kinetics of release of drug from all the formulations appeared to be zero-order based on their regression coefficient values. Comparative evaluation of ex vivo permeation from niosomal and non-niosomal films indicated that the former demonstrated improved mucosal permeation and drug release was also sustained for the 8 h period. Conclusion: Mucoadhesive films impregnated with acyclovir loaded proniosomes could be a potential approach for buccal delivery of acyclovir for improving its absorption and bioavailability.
The network attack detection frameworks are developed to find out the access to computing systems that are unauthorizedly connected across the networks. The intrusion detection is one of such frameworks, developed by that has a higher accuracy for all majority attacks in comparison to existing works. The models deploy different classifiers to demonstrate that the approach is modular in structure. Intrusion detection model developed in this analytical research utilises various machine learning classifiers like Random Forest, SVM, K-Nearest Neighbor, and Naïve Bayes. Experimentation was conducted on dataset NSLKDD, The Performance of classifiers improved as dimensionality reduction and feature selection improves accuracy and reduces false alarm rate. A better generalization is also achieved while integrating multiple classifiers. High accuracy is obtained for all majority attacks in the NSLKDD datasets which is the widely available benchmark datasets for intrusion detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.