Wireless sensor networks (WSN) are deployed for many applications such as tracking and monitoring of endangered species, military applications, etc. which require anonymity of the origin, known as Source Location Privacy (SLP). The aim in SLP is to prevent unauthorized observers from tracing the source of a real event by analyzing the traffic in the network. Previous approaches to SLP such as Fortified Anonymous Communication Protocol (FACP) employ transmission of real or fake packets in every time slot, which is inefficient. To overcome this shortcoming, we developed three different techniques presented in this paper. Dummy Uniform Distribution (DUD), Dummy Adaptive Distribution (DAD) and Controlled Dummy Adaptive Distribution (CAD) were developed to overcome the anonymity problem against a global adversary (which has the capability of analyzing and monitoring the entire network). Most of the current techniques try to prevent the adversary from perceiving the location and time of the real event whereas our proposed techniques confuse the adversary about the existence of the real event by introducing low rate fake messages, which subsequently lead to location and time privacy. Simulation results demonstrate that the proposed techniques provide reasonable delivery ratio, delay, and overhead of a real event's packets while keeping a high level of anonymity. Three different analysis models are conducted to verify the performance of our techniques. A visualization of the simulation data is performed to confirm anonymity. Further, neural network models are developed to ensure that the introduced techniques preserve SLP. Finally, a steganography model based on probability is implemented to prove the anonymity of the techniques.
Source anonymity in wireless sensor networks (WSNs) becomes a real concern in several applications such as tracking and monitoring. A global adversary that has sophisticated resources, high computation and full view of the network is an obvious threat to such applications. The network and applications need to be protected and secured to provide the expected outcome. Source anonymity is one of the fundamental WSNs security issues. It is all about preventing the adversary from reaching the origin by analyzing the traffic of the network. There are many methods to provide source anonymity, which is also known as Source Location Privacy (SLP). One of these methods is based on dummy packets. The basic notion is to inject the network with dummy packets to confuse the adversary about the location of the transmitting source node. This paper provides a survey of protocols for anonymity that use dummy packet injections. We discuss each technique from the point of their advantages and disadvantages. Further, We provide a comparison for the most promising techniques provided in the literature which use dummy packet injections. A comparison for the adversary assumptions and capabilities will be provided as well.
Robot navigation in indoor environments has become an essential task for several applications, including situations in which a mobile robot needs to travel independently to a certain location safely and using the shortest path possible. However, indoor robot navigation faces challenges, such as obstacles and a dynamic environment. This paper addresses the problem of social robot navigation in dynamic indoor environments, through developing an efficient SLAM-based localization and navigation system for service robots using the Pepper robot platform. In addition, this paper discusses the issue of developing this system in a way that allows the robot to navigate freely in complex indoor environments and efficiently interact with humans. The developed Pepper-based navigation system has been validated using the Robot Operating System (ROS), an efficient robot platform architecture, in two different indoor environments. The obtained results show an efficient navigation system with an average localization error of 0.51 m and a user acceptability level of 86.1%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.