For species to stay temporally tuned to their environment, they use cues such as the accumulation of degree-days. The relationships between the timing of a phenological event in a population and its environmental cue can be described by a population-level reaction norm. Variation in reaction norms along environmental gradients may either intensify the environmental effects on timing (cogradient variation) or attenuate the effects (countergradient variation). To resolve spatial and seasonal variation in species’ response, we use a unique dataset of 91 taxa and 178 phenological events observed across a network of 472 monitoring sites, spread across the nations of the former Soviet Union. We show that compared to local rates of advancement of phenological events with the advancement of temperature-related cues (i.e., variation within site over years), spatial variation in reaction norms tend to accentuate responses in spring (cogradient variation) and attenuate them in autumn (countergradient variation). As a result, among-population variation in the timing of events is greater in spring and less in autumn than if all populations followed the same reaction norm regardless of location. Despite such signs of local adaptation, overall phenotypic plasticity was not sufficient for phenological events to keep exact pace with their cues—the earlier the year, the more did the timing of the phenological event lag behind the timing of the cue. Overall, these patterns suggest that differences in the spatial versus temporal reaction norms will affect species’ response to climate change in opposite ways in spring and autumn.
Here are presented the results of the analysis of daily activity patterns obtained from the data of camera traps for five large mammals (elk Alces alces, wild boar Sus scrofa, brown bear Ursus arctos, grey wolf Canis lupus, Eurasian lynx Lynx lynx) and three medium ones (European badger Meles meles, raccoon dog Nyctereutes procyonoides, mountain hare Lepus timidus) for the territory of the Central Forest Nature Reserve, Valdai Upland, Russia. Data were collected in the period 2010-2017 and the trap effort was 30 158 camera days from 21 locations. Most of the mammals surveyed showed activity at night and twilight hours (71% of the pictures). The hare was most active among all and dominant at night. In many respects it is similar to the activity of a raccoon dog, which type can be defined as nocturnal too. Unlike a hare, a raccoon dog has a weak peak in the daytime and less activity in the night. Badgers movements are confined to the twilight and nighttime. The share of nocturnal activity of large ungulates such as elk and wild boar was approximately the same and amounted to about 45% of all registrations. The wild boar is slightly more active during the day and in the evening and is not active at all in the morning. The elk is active in the morning, and in the daytime and to a lesser extent in the evening. The lynx and the bear have similar cathemeral activity patterns: almost half of all their meetings occurred at daylight hours and only slightly -less than 40% -at night. The brown bear had the maximum number of registrations in the daytime among all the studied species. Despite the fact that the main object of lynx feeding in the reserve is the hare, there was no high degree of overlap between them ( = 0.75). In the group of large carnivores, the wolf was noticeably distinguished, more than half of its registrations were at night, and a third -on daytime. Daily activities of the wolf and its main prey elk showed a large overlap ( = 0.89). The seasonal variations of daily activity of all species were also shown. According to the results of factor analysis, each of the studied species was divided into one of three separate groups. The first group included species with a tendency to nocturnal activity (wolf, elk, hare, badger, and raccoon dog), the second group -cathemeral animals (bear and lynx). In the third group was only the wild boar, whose activity was associated with the evening hours. This is the first long-term continuous camera trap survey in Russia and it provides detailed daily activity patterns for multiple large and medium-sized sympatric mammals.
We present an extensive, large-scale, long-term and multitaxon database on phenological and climatic variation, involving 506,186 observation dates acquired in 471 localities in Russian Federation, Ukraine, Uzbekistan, Belarus and Kyrgyzstan. the data cover the period 1890-2018, with 96% of the data being from 1960 onwards. The database is rich in plants, birds and climatic events, but also includes insects, amphibians, reptiles and fungi. the database includes multiple events per species, such as the onset days of leaf unfolding and leaf fall for plants, and the days for first spring and last autumn occurrences for birds. The data were acquired using standardized methods by permanent staff of national parks and nature reserves (87% of the data) and members of a phenological observation network (13% of the data). The database is valuable for exploring how species respond in their phenology to climate change. Large-scale analyses of spatial variation in phenological response can help to better predict the consequences of species and community responses to climate change. #A full list of authors and their affiliations appears at the end of the paper. Data DeSCRiptOR OpeNScientific Data | (2020) 7:47 | https://doi.
Most habitat suitability models and resource selection functions (RSFs) use indirect variables and habitat surrogates. However, it is known that in order to adequately reflect the habitat requirements of a species, it is necessary to use proximal resource variables. Direct predictors should be used to construct a real RSF that reflects the real influence of main resources on species habitat use. In this work, we model the spatial distribution of the main food resources of brown bear Ursus arctos L. within the natural and human-modified landscapes of the Central Forest State Nature Reserve (CFNR) for further RSF construction. Food-probability models were built for Apiaceae spp. (Angelica sylvestris L., Aegopodium podagraria L., Chaerophyllum aromaticum L.), Populus tremula L., Vaccinium myrtillus L., V. microcarpum (Turcz. ex Rupr.) Schmalh., V. oxycoccos L., Corylus avellana L., Sorbus aucuparia L., Malus domestica Borkh., anthills, xylobiont insects, social wasps and Alces alces L. using the MaxEnt algorithm. For model evaluation, we used spatial block cross-validation and held apart fully independent data. The true skill statistic (TSS) estimates ranged from 0.34 to 0.95. Distribution of Apiaceae forbs was associated with areas having rich phytomass and moist conditions on southeastern slopes. Populus tremula preferred areas with phytomass abundance on elevated sites. Vaccinium myrtillus was confined to wet boreal spruce forests. V. microcarpum and V. oxycoccos were associated with raised bogs in depressions of the terrain. Corylus avellana and Sorbus aucuparia preferred mixed forests on elevated sites. Distribution of Malus domestica was associated with meadows with dry soils in places of abandoned cultural landscapes. Anthills were common on the dry soils of meadows, and the periphery of forest areas with high illumination and low percent cover of tree canopy. Moose preferred riverine flood meadows rich in herbaceous vegetation and sparse mixed forests in spring and early summer. The territory of the human-modified CFNR buffer zone was shown to contain a higher variety of food resources than the strictly protected CFNR core area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.