Memristive technology has experienced explosive growth in the last decade, with multiple device structures being developed for a wide range of applications. However, transitioning the technology from the lab into the marketplace requires the development of an accessible and user-friendly design flow, supported by an industry-grade toolchain. In this work, we demonstrate the behaviour of our in-house fabricated custom memristor model and its integration into the Cadence Electronic Design Automation (EDA) tools for verification. Various input stimuli were given to record the memristive device characteristics both at the device level as well as the schematic level for verification of the memristor model. This design flow from device to industrial level EDA tools is the first step before the model can be used and integrated with Complementary Metal-Oxide Semiconductor (CMOS) in applications for hybrid memristor/CMOS system design.
RRAM technology has experienced explosive growth in the last decade, with multiple device structures being developed for a wide range of applications. However, transitioning the technology from the lab into the marketplace requires the development of an accessible and user-friendly design flow, supported by an industry-grade toolchain. In this work, we demonstrate with examples an end-to-end design flow for RRAM-based electronics, from the introduction of a custom RRAM model into our chosen CAD tool to performing layoutversus-schematic and post-layout checks including the RRAM device. We envisage that this step-by-step guide to introducing RRAM into the standard integrated circuit design flow will be a useful reference document for both device developers who wish to benchmark their technologies and circuit designers who wish to experiment with RRAM-enhanced systems.
No abstract
Emerging applications for implantable devices are requiring multi-unit systems with intrabody transmission of power and data through wireline interfaces. This paper proposes a novel method for power delivery within such a configuration that makes use of closed loop dynamic regulation. This is implemented for an implantable application requiring a single master and multiple identical slave devices utilising a parallel-connected 4-wire interface. The power regulation is achieved within the master unit through closed loop monitoring of the current consumption to the wired link. Simultaneous power transfer and full-duplex data communication is achieved by superimposing the power carrier and downlink data over two wires and uplink data over a second pair of wires. Measured results using a fully isolated (AC coupled) 4-wire lead, demonstrate this implementation can transmit up to 120 mW of power at 6 V (at the slave device, after eliminating any losses). The master device has a maximum efficiency of 80 % including a dominant dynamic power loss. A 6 V constant supply at the slave device is recovered 1.5 ms after a step of 22 mA.
The capability of in-memory computation, reconfigurability, low power operation as well as multistate operation of the memristive device deems them a suitable candidate for designing electronic circuits with a broad range of applications. Besides, the integrability of memristor with CMOS enables it to use in logic circuits too. In this work, we demonstrate with examples the design flow for memristor-based electronics, after the custom memristor model already being integrated and validated into our chosen Computer-Aided Design (CAD) tool to performing layout-versus-schematic and post-layout checks including the memristive device. We envisage that this step-by-step guide to introducing memristor into the standard integrated circuit design flow will be a useful reference document for both device developers who wish to benchmark their technologies and circuit designers who wish to experiment with memristive-enhanced systems. IndexTerms-CAD tool, circuit design, hybrid CMOS/memristor, in-memory computation, low-power, RRAM I. INTRODUCTIONM EMRISTOR is a two-terminal passive device where the resistance can be altered by allowing electrical current to flow. An important characteristic feature of the device is its non-volatility i.e it remembers the resistance value when the power is switched off (memory function). In addition, this resistance value can also be programmed i.e increased or decreased depending on the amount of current flow and its direction. Memristors can also be volatile and non-volatile. Chua's theory [1] was overlooked for decades due to the lack of technological advancement at that time. Nonetheless, after nearly four decades, the connection of Chua' famous work was proven physically by observing resistive switching in a
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.