RESUMO:Óleos essenciais são compostos químicos voláteis, característicos por sua fragrância e frequentes atividades antimicrobianas e antioxidantes. São extraídos dos tricomas de plantas aromáticas a partir de diversos métodos diferentes de extração. As indústrias dão preferência à extração por arraste a vapor (destilação a vapor), por ser um processo tradicional, de simples operação e baixo custo. A modelagem matemática deste processo é um passo inevitável para projetar plantas industriais de extração de óleo essencial visando a boas condições operacionais. O modelo empregado neste trabalho é baseado na difusão do óleo no interior da folha. Apresentam-se o procedimento de discretização deste modelo por método de diferenças finitas e a validação deste por comparação com a solução analítica. Dados da literatura de perfis de rendimento por tempo de extração foram empregados para a estimação do coeficiente de difusão. Propôs-se a melhoria do modelo por meio da estimação de parâmetros de equações empíricas para a descrição do coeficiente de difusão como função da concentração de óleo. A partir desta modificação, o modelo não possui mais solução analítica, o que justifica o procedimento numérico adotado. O modelo foi validado através de um conjunto de dados disponíveis na literatura.
PALAVRAS-CHAVE: óleos essenciais, modelagem, estimação de parâmetros.
MODELING OF ESSENTIAL OIL EXTRACTION WITH VARIABLE DIFFUSION COEFFICIENTABSTRACT: Essential oils are volatile chemical co mpounds, characteristic for its fragrance and frequent antimicrobial and antioxidant activities. Essential oils are extracted from the glandular trichomes of herbs from various extraction methods. Industries give preference to extraction by steam distillation, for its traditional method, simple operation and low cost. The mathematical modeling of this process is an inevitable step for designing industrial plants of essential oil extraction with good operating condition. The model used in this artic le is based on the diffusion of the oil within the leaf. The discretization procedure of this model is presented through finite differences and its validation by comparing with the analytical solution. Data of profiles yield by extraction time were used to estimate the diffusion coefficient. In order to improve the model empirical equations were applied to describe de diffusion coefficient as a function of the oil concentration and the parameters of these equations were estimated. Using this modification, the model has no longer analytical solution, which justifies the adopted numerical procedure. The model was validated using data from literature.
RESUMO
Óleos essenciais são compostos químicos voláteis, característicos por sua fragrância e frequentes atividades antimicrobianas e antioxidantes. São extraídos dos tricomas de
An optimization strategy has been applied to describe the chemical composition at the furnace bottom in the Kraft recovery boiler of a pulp production process. The concentrations of each involved chemical species were calculated through an optimization approach, minimizing the Gibbs free energy of the system. Various systems were proposed and tested, assuming different chemical species and phases number. Because serious initialization problems were found at this stage for some of the proposed systems, an optimization heuristic method (PSO) was used for the first approach to the problem. Once the appropriate phases number and chemical species in the system were determined, the initialization problems disappeared and the use of a deterministic optimization method (SQP) became viable. The proposed approach has shown to be satisfactory to reproduce industrial data and also data reported in the open scientific literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.