The use of mild conditions to perform the entrapment of biomolecules in polymeric matrices is a crucial step in a broad range of applications as biosensors, biocarrier-mediated facilitated transport membranes, and drug-controlled release devices. In this study, we investigated the crosslinking of poly(vinyl alcohol) (PVA) by glutaraldehyde in the absence of an acid catalyst and organic solvents to improve the water resistance of the hydrophilic biocompatible polymer. Glutaraldehyde was chosen as the crosslinking agent because it favors the intermolecular reaction with PVA and is able to bind nonspecifically to proteins. The effects of the temperature and glutaraldehyde content on the thermal and structural properties of the PVA films were examined. Membranes prepared at
40C showed a maximum crosslinking density for low glutaraldehyde content namely, 0.04 wt % in the spreading solution. Higher amounts of the crosslinker led to the branching of PVA. The increase in membrane thermal properties and reduction in crystallinity were ascribed to the crosslinking treatment, which was confirmed by Fourier transform infrared analysis. The oxygen permeability of the films was reduced up to 2.7 times, which indicated that the crosslinking of the polymer was successfully accomplished. V
-The fractionation of apitoxin (bee venom) by means of a commercial 10 kDa ultrafiltration membrane was investigated aiming at the removal of phospholipase A 2 , the main allergenic substance. The feed content was varied from 1 to 50 g apitoxin/L, in deionized water, and caused changes in membrane flux and rejection, due to concentration polarization. The increase in pressure difference and stirring rate improved the flux through the membrane. The best result was achieved for 1 g apitoxin/L in feed stream, with a pressure difference of 220 kPa, and 750 rpm, with a permeate flux of 103 kg/m 2 h. The use of ultrafiltration was efficient to improve the permeate safety since biological tests revealed that the remaining enzyme lost its ability to catalyze the hydrolysis of phospholipids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.