The 2015 Dietary Guidelines Advisory Committee indicated that magnesium was a shortfall nutrient that was underconsumed relative to the Estimated Average Requirement (EAR) for many Americans. Approximately 50% of Americans consume less than the EAR for magnesium, and some age groups consume substantially less. A growing body of literature from animal, epidemiologic, and clinical studies has demonstrated a varied pathologic role for magnesium deficiency that includes electrolyte, neurologic, musculoskeletal, and inflammatory disorders; osteoporosis; hypertension; cardiovascular diseases; metabolic syndrome; and diabetes. Studies have also demonstrated that magnesium deficiency is associated with several chronic diseases and that a reduced risk of these diseases is observed with higher magnesium intake or supplementation. Subclinical magnesium deficiency can exist despite the presentation of a normal status as defined within the current serum magnesium reference interval of 0.75-0.95 mmol/L. This reference interval was derived from data from NHANES I (1974), which was based on the distribution of serum magnesium in a normal population rather than clinical outcomes. What is needed is an evidenced-based serum magnesium reference interval that reflects optimal health and the current food environment and population. We present herein data from an array of scientific studies to support the perspective that subclinical deficiencies in magnesium exist, that they contribute to several chronic diseases, and that adopting a revised serum magnesium reference interval would improve clinical care and public health.
In comparison with calcium, magnesium is an "orphan nutrient" that has been studied considerably less heavily. Low magnesium intakes and blood levels have been associated with type 2 diabetes, metabolic syndrome, elevated C-reactive protein, hypertension, atherosclerotic vascular disease, sudden cardiac death, osteoporosis, migraine headache, asthma, and colon cancer. Almost half (48%) of the US population consumed less than the required amount of magnesium from food in 2005-2006, and the figure was down from 56% in 2001-2002. Surveys conducted over 30 years indicate rising calcium-to-magnesium food-intake ratios among adults and the elderly in the United States, excluding intake from supplements, which favor calcium over magnesium. The prevalence and incidence of type 2 diabetes in the United States increased sharply between 1994 and 2001 as the ratio of calcium-to-magnesium intake from food rose from <3.0 to >3.0. Dietary Reference Intakes determined by balance studies may be misleading if subjects have chronic latent magnesium deficiency but are assumed to be healthy. Cellular magnesium deficit, perhaps involving TRPM6/7 channels, elicits calcium-activated inflammatory cascades independent of injury or pathogens. Refining the magnesium requirements and understanding how low magnesium status and rising calcium-to-magnesium ratios influence the incidence of type 2 diabetes, metabolic syndrome, osteoporosis, and other inflammation-related disorders are research priorities.
Although much is known about magnesium, its interactions with calcium and vitamin D are less well studied. Magnesium intake is low in populations who consume modern processed-food diets. Low magnesium intake is associated with chronic diseases of global concern [e.g., cardiovascular disease (CVD), type 2 diabetes, metabolic syndrome, and skeletal disorders], as is low vitamin D status. No simple, reliable biomarker for whole-body magnesium status is currently available, which makes clinical assessment and interpretation of human magnesium research difficult. Between 1977 and 2012, US calcium intakes increased at a rate 2–2.5 times that of magnesium intakes, resulting in a dietary calcium to magnesium intake ratio of >3.0. Calcium to magnesium ratios <1.7 and >2.8 can be detrimental, and optimal ratios may be ∼2.0. Background calcium to magnesium ratios can affect studies of either mineral alone. For example, US studies (background Ca:Mg >3.0) showed benefits of high dietary or supplemental magnesium for CVD, whereas similar Chinese studies (background Ca:Mg <1.7) showed increased risks of CVD. Oral vitamin D is widely recommended in US age-sex groups with low dietary magnesium. Magnesium is a cofactor for vitamin D biosynthesis, transport, and activation; and vitamin D and magnesium studies both showed associations with several of the same chronic diseases. Research on possible magnesium and vitamin D interactions in these human diseases is currently rare. Increasing calcium to magnesium intake ratios, coupled with calcium and vitamin D supplementation coincident with suboptimal magnesium intakes, may have unknown health implications. Interactions of low magnesium status with calcium and vitamin D, especially during supplementation, require further study.
Background Previous in vitro and in vivo studies indicate that enzymes that synthesize and metabolize vitamin D are magnesium dependent. Recent observational studies found that magnesium intake significantly interacted with vitamin D in relation to vitamin D status and risk of mortality. According to NHANES, 79% of US adults do not meet their Recommended Dietary Allowance of magnesium. Objectives The aim of this study was to test the hypothesis that magnesium supplementation differentially affects vitamin D metabolism dependent on baseline 25-hydroxyvitamin D [25(OH)D] concentration. Methods The study included 180 participants aged 40–85 y and is a National Cancer Institute independently funded ancillary study, nested within the Personalized Prevention of Colorectal Cancer Trial (PPCCT), which enrolled 250 participants. The PPCCT is a double-blind 2 × 2 factorial randomized controlled trial conducted in the Vanderbilt University Medical Center. Doses for both magnesium and placebo were customized based on baseline dietary intakes. Subjects were randomly assigned to treatments using a permuted-block randomization algorithm. Changes in plasma 25-hydroxyvitamin D3 [25(OH)D3], 25-hydroxyvitamin D2 [25(OH)D2], 1,25-dihydroxyvitamin D3, 1,25-dihydroxyvitamin D2, and 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] were measured by liquid chromatography–mass spectrometry. Results The relations between magnesium treatment and plasma concentrations of 25(OH)D3, 25(OH)D2, and 24,25(OH)2D3 were significantly different dependent on the baseline concentrations of 25(OH)D, and significant interactions persisted after Bonferroni corrections. Magnesium supplementation increased the 25(OH)D3 concentration when baseline 25(OH)D concentrations were close to 30 ng/mL, but decreased it when baseline 25(OH)D was higher (from ∼30 to 50 ng/mL). Magnesium treatment significantly affected 24,25(OH)2D3 concentration when baseline 25(OH)D concentration was 50 ng/mL but not 30 ng/mL. On the other hand, magnesium treatment increased 25(OH)D2 as baseline 25(OH)D increased. Conclusion Our findings suggest that optimal magnesium status may be important for optimizing 25(OH)D status. This trial was registered at clinicaltrials.gov as NCT03265483.
Abstract-The antihypertensive effect of magnesium (Mg) supplementation remains controversial. We aimed to quantify the effect of oral Mg supplementation on blood pressure (BP) by synthesizing available evidence from randomized,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.