Crucial transitions in cancer-including tumor initiation, local expansion, metastasis, and therapeutic resistance-involve complex interactions between cells within the dynamic tumor ecosystem. Transformative single-cell genomics technologies and spatial multiplex in situ methods now provide an opportunity to interrogate this complexity at unprecedented resolution. The Human Tumor Atlas Network (HTAN), part of the National Cancer Institute (NCI) Cancer Moonshot Initiative, will establish a clinical, experimental, computational, and organizational framework to generate informative and accessible three-dimensional atlases of cancer transitions for a diverse set of tumor types. This effort complements both ongoing efforts to map healthy organs and previous largescale cancer genomics approaches focused on bulk sequencing at a single point in time. Generating single-cell, multiparametric, longitudinal atlases and integrating them with clinical outcomes should help identify novel predictive biomarkers and features as well as therapeutically relevant cell types, cell states, and cellular interactions across transitions. The resulting tumor atlases should have a profound impact on our understanding of cancer biology and have the potential to improve cancer detection, prevention, and therapeutic discovery for better precision-medicine treatments of cancer patients and those at risk for cancer.Cancer forms and progresses through a series of critical transitions-from pre-malignant to malignant states, from locally contained to metastatic disease, and from treatment-responsive to treatment-resistant tumors (Figure 1). Although specifics differ across tumor types and patients, all transitions involve complex dynamic interactions between diverse pre-malignant, malignant, and non-malignant cells (e.g., stroma cells and immune cells), often organized in specific patterns within the tumor
Colorectal cancers (CRCs) arise from precursor polyps whose cellular origins, molecular heterogeneity, and immunogenic potential may reveal diagnostic and therapeutic insights when analyzed at high resolution. We present a single-cell transcriptomic and imaging atlas of the two most common human colorectal polyps, conventional adenomas and serrated polyps, and their resulting CRC counterparts. Integrative analysis of 128 datasets from 62 participants reveals adenomas arise from WNT-driven expansion of stem cells, while serrated polyps derive from differentiated cells through gastric metaplasia. Metaplasia-associated damage is coupled to a cytotoxic immune microenvironment preceding hypermutation, driven partly by ll
Background Previous in vitro and in vivo studies indicate that enzymes that synthesize and metabolize vitamin D are magnesium dependent. Recent observational studies found that magnesium intake significantly interacted with vitamin D in relation to vitamin D status and risk of mortality. According to NHANES, 79% of US adults do not meet their Recommended Dietary Allowance of magnesium. Objectives The aim of this study was to test the hypothesis that magnesium supplementation differentially affects vitamin D metabolism dependent on baseline 25-hydroxyvitamin D [25(OH)D] concentration. Methods The study included 180 participants aged 40–85 y and is a National Cancer Institute independently funded ancillary study, nested within the Personalized Prevention of Colorectal Cancer Trial (PPCCT), which enrolled 250 participants. The PPCCT is a double-blind 2 × 2 factorial randomized controlled trial conducted in the Vanderbilt University Medical Center. Doses for both magnesium and placebo were customized based on baseline dietary intakes. Subjects were randomly assigned to treatments using a permuted-block randomization algorithm. Changes in plasma 25-hydroxyvitamin D3 [25(OH)D3], 25-hydroxyvitamin D2 [25(OH)D2], 1,25-dihydroxyvitamin D3, 1,25-dihydroxyvitamin D2, and 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] were measured by liquid chromatography–mass spectrometry. Results The relations between magnesium treatment and plasma concentrations of 25(OH)D3, 25(OH)D2, and 24,25(OH)2D3 were significantly different dependent on the baseline concentrations of 25(OH)D, and significant interactions persisted after Bonferroni corrections. Magnesium supplementation increased the 25(OH)D3 concentration when baseline 25(OH)D concentrations were close to 30 ng/mL, but decreased it when baseline 25(OH)D was higher (from ∼30 to 50 ng/mL). Magnesium treatment significantly affected 24,25(OH)2D3 concentration when baseline 25(OH)D concentration was 50 ng/mL but not 30 ng/mL. On the other hand, magnesium treatment increased 25(OH)D2 as baseline 25(OH)D increased. Conclusion Our findings suggest that optimal magnesium status may be important for optimizing 25(OH)D status. This trial was registered at clinicaltrials.gov as NCT03265483.
The purpose of this study is to evaluate similarities and differences in gut bacterial measurements and stability in the microbial communities of three different types of samples that could be used to assess different niches of the gut microbiome: rectal swab, stool, and normal rectal mucosa samples. In swab-stool comparisons, there were substantial taxa differences with some taxa varying largely by sample type (e.g. Thermaceae), inter-individual subject variation (e.g. Desulfovibrionaceae), or by both sample type and participant (e.g. Enterobacteriaceae). Comparing all three sample types with whole-genome metagenome shotgun sequencing, swab samples were much closer to stool samples than mucosa samples although all KEGG functional Level 1 and Level 2 pathways were significantly different across all sample types (e.g. transcription and environmental adaptation). However, the individual signature of participants was also observed and was largely stable between two time points. Thus, we found that while the distribution of some taxa was associated with these different sampling techniques, other taxa largely reflected individual differences in the microbial community that were insensitive to sampling technique. There is substantial variability in the assessment of the gut microbial community according to the type of sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.