3D-printed bioactive ceramic scaffolds can restore critical mandibular segmental defects to levels similar to native bone after 8 weeks in an adult rabbit, critical sized, mandibular defect model.
Background:
Alveolar clefts are traditionally treated with secondary bone grafting, but this is associated with morbidity and graft resorption. Although recombinant human bone morphogenetic protein-2 (rhBMP-2) is under investigation for alveolar cleft repair, safety concerns remain. Dipyridamole is an adenosine receptor indirect agonist with known osteogenic potential. This study compared dipyridamole to rhBMP-2 at alveolar cleft defects delivered using bioceramic scaffolds.
Methods:
Skeletally immature New Zealand White rabbits underwent unilateral, 3.5 × 3.5-mm alveolar resection adjacent to the growing suture. Five served as negative controls. The remaining defects were reconstructed with three-dimensionally printed bioceramic scaffolds coated with 1000 μm of dipyridamole (n = 6), 10,000 μm of dipyridamole (n = 7), or 0.2 mg/ml of rhBMP-2 (n = 5). At 8 weeks, new bone was quantified. Nondecalcified histologic evaluation was performed, and new bone was evaluated mechanically. Statistical analysis was performed using a generalized linear mixed model and the Wilcoxon rank sum test.
Results:
Negative controls did not heal, whereas new bone formation bridged all three-dimensionally printed bioceramic treatment groups. The 1000-μm dipyridamole scaffolds regenerated 28.03 ± 7.38 percent, 10,000-μm dipyridamole scaffolds regenerated 36.18 ± 6.83 percent (1000 μm versus 10,000 μm dipyridamole; p = 0.104), and rhBMP-2–coated scaffolds regenerated 37.17 ± 16.69 percent bone (p = 0.124 versus 1000 μm dipyridamole, and p = 0.938 versus 10,000 μm dipyridamole). On histology/electron microscopy, no changes in suture biology were evident for dipyridamole, whereas rhBMP-2 demonstrated early signs of suture fusion. Healing was highly cellular and vascularized across all groups. No statistical differences in mechanical properties were observed between either dipyridamole or rhBMP-2 compared with native bone.
Conclusion:
Dipyridamole generates new bone without osteolysis and early suture fusion associated with rhBMP-2 in skeletally immature bone defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.