The lionfish, Pterois miles, is one of the most recent Lessepsian immigrants into the Mediterranean Sea, and it poses a serious threat to marine ecosystems in the region. This study assesses the basic biology and ecology of lionfish in the Mediterranean, examining morphometrics, reproduction and diet as well as population structure and distribution. The population density of lionfish has increased dramatically in Cyprus since the first sighting in late 2012; by 2018 aggregations of up to 70 lionfish were found on rocky grounds with complex reefs and artificial reefs in depths of 0-50 m. Lionfish in Cyprus become mature within a year, and adults are capable of spawning year-round, with peak spawning in summer when the sea-surface temperature reaches 28.4 C. The Cypriot lionfish grow faster and bigger than in their native range, and females are more common than males. Lionfish are generalist predators in these waters, as also found in their native range, consuming a range of teleost and crustacean prey, some of which are of high economic value (e.g., Spicara smaris and Sparisoma cretense) or have an important role in local trophic webs (e.g., Chromis chromis). Overall, the reproductive patterns, the presence of juveniles and adults throughout the year, the rapid growth rates and the generalist diet indicate that lionfish are thriving and are now already well established in the region and could potentially become the serious nuisance that they are in their temperate and tropical western Atlantic-invasive range.
Abstract:Artificial reefs are considered one of the alternative methods in fisheries management, used in order to enhance stocks and marine biodiversity in general. A number of biotic and abiotic parameters influence the fouling communities' formation on artificial reefs through complex interactions. In order to understand how epibiotic or fouling communities progress through time, it is important to study these communities in mature artificial reefs, especially those that have been around for many decades, or in some cases, millennia. This study was conducted on the coral and other fouling organisms of two accidental artificial reefs (40 to 70 year-old shipwrecks) in Cyprus (Levantine Sea). The thermal and nutrient annual regime of the study sites were characterized by processing satellite data. The results indicate that the wrecks are normally under warm and oligotrophic conditions. Percentage coverage of corals and other organisms on the wrecks was calculated (image-analysis software) on photos taken in 2010 (two wrecks) and again in 2016 (one wreck) of the fouling communities. Sponges were the organisms with the highest percent cover (~27%) at the two wrecks. Four scleractinian coral species were found (7%-19% total coral cover). The oldest wreck, which has well-developed coral communities, was revisited during fieldwork in a near-by area in 2016. Only two major benthic categories (dead coral and macro algae) changed significantly between sampling periods. Given the actual policies to sink wrecks to create artificial reefs and the diverse environmental conditions in different areas that will inevitably influence fouling, it is important to carry out studies relating to mature artificial reefs/wrecks in order to be able to assess the ecological effectiveness of longstanding artificial reefs.
Depredation by cetaceans on fisheries is a major issue globally, both in terms of conservation and fisheries economics. The present study conducted in Cyprus, Eastern Mediterranean Sea, aimed to understand the extent, level, and type of cetacean depredation on the albacore tuna pelagic longline fishery, and in particular to quantify and evaluate the economic consequences of depredation and identify potential dolphin-longline conflict areas and mitigation practices for management. The data were obtained from fisher’s logbooks, interviews and onboard observations between June and August 2018. A novel and simple approach was applied to estimate the depredation rate and economic loss by using simple calculations including the number and weight of depredated fish, landings and fishing effort. The results revealed that there is an estimated economic loss per fishing trip of 313.07± 486.19 EUR and an estimated annual economic loss for the entire fleet of 259,272 EUR from depredation caused by cetaceans. The study also estimated that 16,639 albacore tunas were depredated in 2018 and the depredation rate ranged between 0% to 100% with a mean depredation rate of 17% per fishing trip. Depredation by the common bottlenose dolphin and striped dolphin was reported in more than 50% of their fishing trips. Other species that were found to be involved in depredation were the neon flying squid, the shortfin mako shark and the Risso’s dolphin. This is the first official record worldwide of depredation from the common bottlenose dolphin, the striped dolphin and the neon flying squid on the pelagic longline albacore tuna fishery. A total bycatch of 62 individuals of common bottlenose dolphins and one individual of stripped dolphin were reported in interviews as a result of depredation on bait and catch. The study also identified depredation hotspots and possible depredation mitigation measures. Such information could support the development of management action plans and measures to minimise interactions between cetaceans and pelagic longlines.
The marine ecosystems in the Mediterranean are in alarming condition due to the complex and cumulative impacts of anthropogenic activities and natural disturbances. Management, conservation, and restoration of resources in these impacted ecosystems are among the priorities set by Mediterranean countries. Artificial reefs (ARs) are one of the countermeasures widely promoted. The present study describes the hard substrate epibenthic communities found on three ARs (Ierisssos, Kalymnos, and Preveza) located in the Aegean and Ionian Seas (Greece). Samples were collected from the ARs seasonally (four times/year), during 2013 and 2014. Overall, 117 species were identified and a multivariate analysis showed that each area holds a distinct diversity. Serpulid polychaetes dominate Ierissos and Preveza communities, while gastropods were identified as the prevailing taxa in Kalymnos. No seasonal effects were detected, suggesting "stability" and good adaptation of the communities to the local environmental conditions. Salinity was found to affect the community structure. The results of this study illustrate the need for comparative research on ecological processes under contrasting environmental abiotic and biotic local conditions affecting epibenthic communities.
Abstract. Road transport is an important infrastructure system that has a vital role in economic progress, sustainable development, and urban prosperity of societies. Thus, geospatial fundamentals of transport systems need to be adequately considered by the organizations that manage such infrastructures. Furthermore, the adoption of methodologies for monitoring, control and optimisation of transportation networks, from a geographical perspective is crucial to deploy or utilize resources efficiently and cost-effectively. This paper aims to describe the implementation of a complete Geographical Information (GI) based system as developed for the needs of the Cyprus road transport infrastructure. The paper focuses on the system architecture and the presentation of the desktop and mobile application interfaces and utilities. The GI-based system provides a good example of how different tools and open-source components can be integrated to provide a complete solution for collecting, storing, managing, analysing and disseminating geographical information data related to road network infrastructure. The use of the platform within the organization has resulted in a noticeable increase in productivity and accountability. The errors in data collection, analysis and storage were minimized and thus the quality of available data been significantly improved. This is a step towards the achievement of the goals of the European Digital Strategy by using Geographical Information System technologies to take reliable and accurate decisions related to road network monitoring, maintenance and management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.