Rapid quantification of bacterial pollution is a requirement in water quality applications ranging from recreational water use, agriculture and aquaculture to drinking and wastewater treatment. The method and instruments presented in this work should enable fast and accurate bacterial concentration measurements to be performed in a portable or in situ manner, thus simplifying operational logistics, reducing time-to-result delays, and eliminating sample transportation constraints associated with traditional techniques.
<div> <p>Digital solutions open up a variety of opportunities for the water sector. Digital water is now seen not as an &#8216;option&#8217; but as an &#8216;imperative&#8217; (Sarni et al., 2019) for a more sustainable and secure water management. Many solutions leverage the latest innovations developed across industries and business activities including advanced sensors, data analytics and artificial intelligence. The potential of digitalization might outweigh its associated risk if digital solutions are successfully implemented addressing a series of gaps and barriers such as ICT governance, cybersecurity, data protection, interoperability and capacity building.</p> <p>Within this context, the H2020 innovation project digital-water.city (DWC) aims at boosting the integrated management of waters systems in five major European cities &#8211;&#160;Berlin, Copenhagen, Milan, Paris and Sofia&#160;&#8211; by leveraging the potential of data and digital technologies. Goal is to quantify the benefits of a panel of 15 innovative digital solutions and achieve their long-term uptake and successful integration in the existing digital systems and governance processes.</p> <p>One of these promising technology is a new sensor for real-time bacterial measurements, manufactured by the company Fluidion (ALERT System; Angelescu et al., 2019). The device is fully autonomous, remotely controllable, installed in-situ and allows rapid quantification of E.coli and enterococci&#160;concentrations.</p> <p>Ensuring microbial safety is one of the key objectives of bathing water management, and it is also a critical aspect for water reuse. The European Bathing Water Directive (BWD) (76/160/EEC, 2006) uses fecal indicator bacteria for quality assessment of marine and inland waters. A major challenge regarding bathing water management is that concentrations of fecal bacteria may show spatial and temporal variability. In urban rivers, discharges from CSO and stormwater may contain high amounts of fecal bacteria and contaminate bathing water quality. Bathing water surveillance in Europe is only based on monthly grab samples and event-scale variability is detected only by chance as pollution events may occur between sampling intervals.</p> <p>The ALERT System is currently tested in Berlin and Paris using side by side laboratory comparison to understand temporal variability and spatial bacterial distribution in the local rivers (Seine, Marne and Spree). In Milan, the system is being deployed to provide early warning of bacterial and toxic contamination linked to water reuse at a major wastewater treatment plant. Preliminary analysis have shown that the device shows metrological capabilities comparable to those of an approved laboratory using MPN microplate techniques and is suitable for bacterial pollutant concentration ranges such as urban streams and wastewater treatment plant.</p> <p>The technology opens up new opportunities for the water sector for a range of applications such as the planning of pollution reduction measures, the continuous monitoring of bathing water quality and the assessment of contamination risk by the reuse of treated wastewater for irrigation. In particular, it is a key innovation to contribute to the objective of Paris city and other local municipalities to provide permanent and safe opportunities for bathing in the Seine river for the 2024 Olympic and Paralympic Games, and beyond.</p> </div>
La réduction du risque microbiologique dans les eaux de baignade nécessite des données de terrain précises. Aujourd’hui, des données fiables de terrain suffisamment denses dans le temps et dans l’espace sont difficiles, voire impossibles à recueillir à cause du manque d’appareils de mesure permettant de le faire, de la complexité logistique pour prélever et analyser les échantillons, avec des coûts élevés. Nous présentons une méthodologie innovante avec l’instrumentation associée pour évaluer à moindre coût l’impact microbiologique en rivière de pollutions. Connaître la pollution microbiologique en rivière relève de la modélisation hydrodynamique couplée à des estimations de concentration des sources de pollution et à l’évolution de la microbiologie dans le milieu. Les résultats permettent d’obtenir une estimation de l’évolution des pollutions microbiologiques, mais restent très dépendants des paramètres locaux de calage pour estimer localement un niveau de pollution. La méthodologie présentée ici permet d’obtenir des concentrations précises directement dans le milieu, pour une gamme importante d’événements polluants, en déployant sur site une technologie automatisant les prélèvements et les analyses microbiologiques n’importe où souhaité. Nous présentons une étude de cas où nous avons d’abord quantifié l’impact ponctuel des rejets, colorés à la fluorescéine (traceur) et déclenchés de manière coordonnée, de cinq bateaux, au moyen de mesures à haute densité de la concentration de bactéries Escherichia coli (E. coli) et de la concentration relative (CR) de traceur permettant de calculer les facteurs de dilution. Le prélèvement a été réalisé manuellement à la canne, et de manière automatique avec un drone aquatique ciblant le panache de pollution. Nous avons ensuite évalué l’impact sanitaire des rejets des cinq bateaux sur un mois entier au moyen de l’instrumentation de microbiologie rapide Alert, placée à l’amont et à l’aval du groupe de bateaux, pour distinguer l’impact des rejets des bateaux sur le bruit de fond des E. coli dans la Marne. Tous les instruments utilisés sont actionnés automatiquement, fonctionnent sur batteries et transmettent leurs données sans fil, ce qui dispense du besoin d’un laboratoire pour analyser les prélèvements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.