A modeling and simulation approach for problems with solid-liquid-solid phase transitions and a free surface, feasible for material accumulation processes based on laser-based free form heading and welding processes for joining different metallic materials is presented. Both named processes are modeled within the framework of continuum mechanics by coupling the Stefan problem with the Navier-Stokes equations including a free capillary surface.
Common goals of modern production processes are precision and efficiency. Typically, they are conflicting and cannot be optimized at the same time. Multi-objective optimization methods are able to compute a set of good parameters, from which a decision maker can make a choice for practical situations. For complex processes, the use of physical experiments and/or extensive process simulations can be too costly or even unfeasible, so the use of surrogate models based on few simulations is a good alternative. In this work, we present an integrated framework to find optimal process parameters for a laser-based material accumulation process (thermal upsetting) using a combination of meta-heuristic optimization models and finite element simulations. In order to effectively simulate the coupled system of heat equation with solid-liquid phase transitions and melt flow with capillary free surface in three space dimensions for a wide range of process parameters, we introduce a new coupled numerical 3d finite element method. We use a multi-objective optimization method based on surrogate models. Thus, with only few direct simulations necessary, we are able to select Pareto sets of process parameters which can be used to optimize three or six different performance measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.