Development of breast tumors is often accompanied by angiogenesis--the formation of new blood vessels. It is possible to image the effects of this process by tracking the uptake and washout of contrast agents in the vicinity of a lesion. In this article, a method for carrying out contrast subtraction mammography on a full-field digital mammography unit is described. Spectral measurements and modeling were performed to optimize the choice of x-ray target, kilovoltage and x-ray beam filtration for contrast digital mammography (CDM) on an available digital mammography system. Phantom studies were carried out to determine the sensitivity of CDM to iodine. Detection of iodine area densities of 0.3 mg/cm2 is possible for a circular object with a radius of 1.3 mm, which allows detection of uptake levels in the breast typically seen with cancer and some benign breast conditions. It was found that with a molybdenum anode x-ray tube, copper filtration could be used to effectively shape the x-ray spectrum to maximize the proportion of x rays with energies above the k edge of iodine. Simple logarithmic subtraction was found to be adequate in suppressing background signals dependent on the x-ray beam intensity and background thickness of the breast. The total x-ray dose from the procedure ranges between 1 and 3 mGy, similar to that from a conventional single view film mammogram. A clinical pilot study is currently being carried out to evaluate this technique.
A robust algorithm for the registration of 3D CT and ultrasound datasets is presented. The computation time seems sufficiently short to permit intraoperative use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.