Increasing interest in medicinal plants encourages the growers to consider extending their range of cultivated species. Acclimatization and adaptation of species introduced for cultivation in new areas remain a challenge of modern agriculture. One of the first steps for optimizing the cultivation technology is determining the plant phenology in the local conditions. Therefore, the aim of this research was to provide a standardized phenology scale for Agastache sp. and to apply it in assessing the suitability for cultivation in a local environment of some valuable Agastache species: Agastache scrophulariifolia, Agastache rugosa, Agastache mexicana, Agastache foeniculum and Agastache rugosa ‘After Eight’. During the vegetation period, nine growth stages were identified: germination/emergence, leaf development, formation of side shoots, stem elongation, inflorescence emergence, flowering, fruit development, fruit maturity, senescence and beginning of resting. Observations conducted over two years revealed that the vegetation period increased from 168.8 ± 3.51 days in the first year to 199.0 ± 1.82 days in the second year. In both vegetation periods, the flowering phenophase predominated, but the abundance of precipitations shortened the flowering duration in the second year. The duration of phenophases was highly influenced by growing degree days. Phenological assessment based on a standardized scale can be a useful tool for evaluating cultivation potential and the planning of technological resources.
Cultivation of spring wheat varieties has expanded into areas with abundant winters where winter wheat is not suitable. Due to lack of research in Romania regarding the influence of different factors on hard red spring wheat, the present study aimed at a better understanding of the influence of genotype, climatic conditions and nitrogen fertilization on the spring wheat yield and quality, and to analyse the correlations between grain yield and grain protein content. Experiences were conducted from 2015 to 2018 on two levels of N fertilization (50 and 100 kg ha-1) at Agricultural Research and Development Station Turda. Biological material consisted of 19 genotypes, four of local origin and fifteen of foreign origin, from three different varieties (ferrugineum, lutescens, erythrospermum). The results indicate that the three experimental years were more important in the interactions with the genotypes than was the N fertilization, for both yield and protein content. The most productive cultivars with good stability were ‘Feeling’ and ‘SG 5-01’, and the most valuable varieties regarding the protein content were ‘Pădureni’, ‘Corso’ and ‘GK Tavasz’. A high dose of N assured a high yield and good quality for all cultivars. Although negative correlations were found between production and protein content in HRSW, there were found cultivars that show positive regressions of protein content, such as ‘Pădureni’, ‘Feeling’ and ‘Lona’.
Lavender is in the research spotlight due to its increasing economic importance, while market demand is expected to continue to grow. Among the hundreds of essential-oil-bearing plants, Lavandula angustifolia Mill. remains one of the most valuable. This paper explores the lavender chain timeline from crop to products, examining the expanding knowledge on the characteristics, phytochemical profile and functional potential of lavender that could lead to new products and uses. Lavender crops can be expanded without competing for productive land, instead using marginal, contaminated or unproductive land. A novel cultivation trend proposes leveraging agri-background biodiversity, arbuscular mycorrhiza and the natural enemies of pests for healthy crops. Together with breeding efforts targeting highly performant genotypes with complex volatile profiles coupled with resistance to specific biotic (particularly Phytoplasma) and abiotic (salt, heavy metals) stressors, industry could have a steady supply of high-quality raw material. Besides the expansion of the uses of essential oil in cosmetics, pharmaceuticals, food and environmental and agri-applications, novel channels have appeared for the use of the solid by-product, which is rich in polyphenols and polysaccharides; these channels have the potential to create additional streams of value. The stabilization and optimization of techno-functional delivery systems through the encapsulation of essential oil can extend shelf-life and enhance biological activity efficiency.
Plant fibers are sustainable sources of materials for many industries, and can be obtained from a variety of plants. Cellulose is the main constituent of plant-based fibers, and its properties give the characteristics of the fibers obtained. Detailed characterization of cellulosic fibers is often performed after lengthy extraction procedures, while fast screening might bring the benefit of quick qualitative assessment of unprocessed stems. The aim of this research was to define some marker spectral regions that could serve for fast, preliminary qualitative characterization of unprocessed stems from some textile plants through a practical and minimally invasive method without lengthy extraction procedures. This could serve as a screening method for sorting raw materials by providing an accurate overall fingerprint of chemical composition. For this purpose, we conducted comparative Fourier Transform Infrared Spectroscopy (FT-IR) prospecting for quality markers in stems of flax (Linum usitatissimum L.), velvet leaf (Abutilon theophrasti Medik.), hemp (Cannabis sativa L.) and jute (Corchorus olitorius L.). Analysis confirmed the presence of major components in the stems of the studied plants. Fingerprint regions for cellulose signals were attributed to bands at 1420–1428 cm−1 assigned to the crystalline region and 896–898 cm−1 assigned to the amorphous region of cellulose. The optimization of characterization methods for raw materials is important and can find immediate practical applications.
Researches carrying evidence for various uses and bioactive principles of Agastache spp. are justifying the upscaling into cultivation of these medicinal species. But, hindrances in their cultivation exist due to the insufficient documentation of their biology under field conditions. Because productivity of these medicinal species (herba) is ensured by the combined contribution of plant agronomic traits, these are related to the feasibility of the crop and therefore, can be used as predictors for successful cultivation. The aim of this study was to evaluate comparatively four valuable Agastache species (A. mexicana, A. scrophulariifolia, A. foeniculum) and one cultivar (A. rugosa ‘After Eight’), in order to identify the favourability for cultivation in local conditions (Romania). Based on the structural indicators of plant morphology (plant height, shoot number, leaf number, leaf length and width, inflorescence length, verticillaster number and flower number), registered over the span of two years, were explored relationships and similarities as well as their implications in previsioning the phenotypic potential. The results showed that studied species acclimatized successfully and all agronomic parameters studied increased in values in the second year. The average plant height in second year (2020) was 109.8 cm and average inflorescences length 9.6 cm. Stable positive correlations between inflorescence length with plant height and shoot number were observed, while differences among species became pronounced as plants become established, evidenced by clearer distinction in the second year. Phenotypic potential in the absence of inputs enables the feasibility assessment for medicinal plants introduced for cultivation in new regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.