Ion irradiation is a powerful tool to tune properties of semiconductors and, in particular, of gallium oxide (Ga2O3) which is a promising ultra-wide bandgap semiconductor exhibiting phase instability for high enough strain/disorder levels. In the present paper we observed an interesting interplay between the disorder and strain in monoclinic β-Ga2O3 single crystals by comparing atomic and cluster ion irradiations as well as atomic ions co-implants. The results obtained by a combination of the channeling technique, X-ray diffraction and theoretical calculations show that the disorder accumulation in β-Ga2O3 exhibits superlinear behavior as a function of the collision cascade density. Moreover, the level of strain in the implanted region can be engineered by changing the disorder conditions in the near surface layer. The results can be used for better understanding of the radiation effects in β-Ga2O3 and imply that disorder/strain interplay provides an additional degree of freedom to maintain desirable strain in Ga2O3, potentially applicable to modify the rate of the polymorphic transitions in this material.
Realization of radiation-hard electronic devices able to work in harsh environments requires deep understanding the processes of defect formation/evolution occurring in semiconductors bombarded by energetic particles. In the present work we address such intriguing radiation phenomenon as high radiation tolerance of GaN and analyze structural disorder employing advanced co-irradiation schemes where low and high energy implants with different ions have been used. Channeling analysis revealed that the interplay between radiation-stimulated defect annealing and defect stabilization by implanted atoms dominates defect formation in the crystal bulk. Furthermore, the balance between these two processes depends on implanted species. In particular, strong damage enhancement leading to the complete GaN bulk amorphization observed for the samples pre-implanted with fluorine ions, whereas the co-irradiation of the samples pre-implanted with such elements as neon, phosphorus, and argon ions leads to a decrease of the damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.