The present investigation intended to evaluate the bacteriostatic and bactericidal abilities of clove, oregano and thyme essential oils against oral bacteria in planktonic and biofilm states. Furthermore, aiming to mimic everyday conditions, a toothbrush in vitro model was developed. Determination of the minimum inhibitory concentration, minimum bactericidal concentration, minimum biofilm inhibitory concentration and minimum biofilm eradication concentration were achieved using the microdilution procedure. To simulate the toothbrush environment, nylon fibers were inoculated with oral bacteria, which, after incubation to allow biofilm development, were submitted to contact with the essential oils under study. Thyme and oregano essential oils revealed promising antimicrobial effects, both in growth inhibition and the destruction of cells in planktonic and biofilm states, while clove essential oil showed a weaker potential. Regarding the toothbrush in vitro model, observation of the nylon fibers under a magnifying glass proved the essential oil anti-biofilm properties. Considering the effects observed using the in vitro toothbrush model, a realistic approximation to oral biofilm establishment in an everyday use object, a putative application of essential oils as toothbrush sanitizers to help prevent the establishment of bacterial biofilm can be verified.
The GenBank/EMBL/DDBJ accession numbers of the LSU and ITS sequences of Cryolevonia schafbergensis sp. nov. PYCC 8347 T are MN058075 and MN058074, respectively. The MycoBank accession numbers for the genus and species names are MB831388 and MB831395, respectively. Three supplementary figures are available with the online version of this article.
A new replicon suitable for cloning and gene expression was successfully introduced into Streptococcus pneumoniae. The non-integrative lactococcal vectors pIL253 (higher-copy) and pIL252 (lower-copy), which are based on the promiscuous theta-replicating plasmid pAMβ1, were established in pneumococcus. The stability and the small size of these plasmids, together with the presence of a helpful multi-cloning site make them a useful genetic tool for gene expression in this bacterium. The functionality of the system was tested by cloning and expressing the pneumococcal RNase R gene in pIL253. Full constitutive expression of the cloned gene was observed, clearly demonstrating that this plasmid can be used as an expression vector in S. pneumoniae. Moreover, gene expression can be regulated by the use of the lower- or higher-copy number vector versions. The existence of other replicative plasmids based on this family, which are also probably functional in pneumococcus, further broadens the cloning possibilities. We also show that S. pneumoniae cells can accommodate simultaneously pIL252 or pIL253 together with pLS1, a pMV158 derivative, which replicates via a rolling circle mechanism. This fact greatly increases the ability to manipulate this bacterium. The availability of a new family of replicative vectors for genetic manipulation in S. pneumoniae is an important contribution to the study of this pathogenic microorganism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.