Stroke is the second leading cause of death, after ischemic heart disease, and accounts for 9% of deaths worldwide. According to the World Health Organization [WHO], 15 million people suffer stroke worldwide each year. Of these, more than 6 million die and another 5 million are permanently disabled. Reactive oxygen species [ROS] have been implicated in brain injury after ischemic stroke. There is evidence that a rapid increase in the production of ROS immediately after acute ischemic stroke rapidly overwhelm antioxidant defences, causing further tissue damage. These ROS can damage cellular macromolecules leading to autophagy, apoptosis, and necrosis. Moreover, the rapid restoration of blood flow increases the level of tissue oxygenation and accountsfor a second burst of ROS generation, which leads to reperfusion injury. Current measures to protect the brain against severe stroke damage are insufficient. Thus, it is critical to investigate antioxidant strategies that lead to the diminution of oxidative injury. The antioxidant vitamins C and E, the polyphenol resveratrol, the xanthine oxidase [XO] inhibitor allopurinol, and other antioxidant strategies have been reviewed in the setting of strokes. This review focuses on the mechanisms involved in ROS generation, the role of oxidative stress in the pathogenesis of ischemic stroke, and the novel therapeutic strategies to be tested to reduce the cerebral damage related to both ischemia and reperfusion.
Oxidative stress (OS) plays a key role in the pathophysiology of essential hypertension and is associated with changes in the cell membrane fatty acid composition and fluidity. As (Na,K)-ATPase is modulated by the surrounding lipid microenvironment, lipid peroxidation could alter the interactions of this enzyme with the membrane components. Thus, modifications in the membrane fatty acid profile will translate into effects on (Na,K)-ATPase activity. Accordingly, a decrease in this enzyme activity has been reported in hypertensive patients. The aim of this study was to evaluate the relationship between membrane fluidity and fatty acid composition and (Na,K)-ATPase activity in erythrocytes of essential hypertensive patients supplemented with antioxidant vitamins C and E. A double-blind, randomized, placebo-controlled study was conducted in 120 men with essential hypertension assigned to receive vitamin C (1 g/day) +E (400 IU/day) or placebo for 8 weeks. Measurements included OS related parameters: GSH/GSSG ratio, F2-isoprostanes and antioxidant capacity of plasma, (Na,K)-ATPase activity and erythrocytes membrane fatty acid composition (PUFA, polyunsaturated fatty acids; SAFA, saturated fatty acids). Associations were assessed by Pearson correlation and the differences by Student t-test (p<0.05). Supplemented hypertensive patients showed higher activity of (Na,K)-ATPase and proportion of PUFA, and lower blood pressure, OS markers and proportion of SAFA, versus placebo. The activity of (Na,K)-ATPase correlated negatively with the proportion of SAFA, but positively with that of PUFA in both groups. Supplementation with vitamins C+E resulted in decreased OS and increased fluidity and PUFA proportion in the membrane, both of which positively modulate (Na,K)-ATPase activity, accounting for the blood pressure reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.