The koala (Phascolarctos cinereus) occurs in the eucalypt forests of eastern and southern Australia and is currently threatened by habitat fragmentation, climate change, sexually transmitted diseases, and low genetic variability throughout most of its range. Using data collected during the Great Koala Count (a 1-day citizen science project in the state of South Australia), we developed generalized linear mixed-effects models to predict habitat suitability across South Australia accounting for potential errors associated with the dataset. We derived spatial environmental predictors for vegetation (based on dominant species of Eucalyptus or other vegetation), topographic water features, rain, elevation, and temperature range. We also included predictors accounting for human disturbance based on transport infrastructure (sealed and unsealed roads). We generated random pseudo-absences to account for the high prevalence bias typical of citizen-collected data. We accounted for biased sampling effort along sealed and unsealed roads by including an offset for distance to transport infrastructures. The model with the highest statistical support (wAICc ∼ 1) included all variables except rain, which was highly correlated with elevation. The same model also explained the highest deviance (61.6%), resulted in high R2(m) (76.4) and R2(c) (81.0), and had a good performance according to Cohen's κ (0.46). Cross-validation error was low (∼ 0.1). Temperature range, elevation, and rain were the best predictors of koala occurrence. Our models predict high habitat suitability in Kangaroo Island, along the Mount Lofty Ranges, and at the tips of the Eyre, Yorke and Fleurieu Peninsulas. In the highest-density region (5576 km2) of the Adelaide–Mount Lofty Ranges, a density–suitability relationship predicts a population of 113,704 (95% confidence interval: 27,685–199,723; average density = 5.0–35.8 km−2). We demonstrate the power of citizen science data for predicting species' distributions provided that the statistical approaches applied account for some uncertainties and potential biases. A future improvement to citizen science surveys to provide better data on search effort is that smartphone apps could be activated at the start of the search. The results of our models provide preliminary ranges of habitat suitability and population size for a species for which previous data have been difficult or impossible to gather otherwise.
Acetic acid is an organic acid available in concentrations from 2 to 80%. Whilst lower concentrations of 2-6% are more commonly used as the table top condiment, vinegar, much stronger solutions are regularly used in Eastern Europe as food preservatives and cleaning solutions. Oral ingestion of greater than 12% has been reported to cause haemolysis, renal failure, shock and death. Most reported cases of deliberate or accidental poisoning are from Russia and Eastern Europe in the 1980s, with very little currently in western publications. We present the case of a female patient who attempted suicide by drinking 250 ml of 70% acetic acid. Her widespread gastrointestinal injuries were managed conservatively, and despite suffering extensive upper airway and renal complications, she was successfully decannulated and discharged home after a prolonged intensive care and hospital stay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.