Poly(3-hexylthiophene-2,5-diyl) (P3HT), a conducting polymer studied extensively for its optoelectronic devices, offers a number of advantageous properties when used as a conductive binder for lithium-ion battery cathode materials. By mixing with carbon nanotubes (CNT), P3HT-CNT serves as a surface coating for the cathode material LiNi0.8Co0.15Al0.05O2 (NCA). Oxidation of the P3HT enables high electronic and ionic conductivity to be achieved over the potential range where the NCA is electrochemically active. In addition to the conductivity benefits from electrochemical doping, the P3HT-CNT coating suppresses electrolyte breakdown, thus inhibiting growth of the solid electrolyte interphase layer and preventing intergranular cracking in the NCA particles. The use of the P3HT-CNT binder system leads to improved cycling for NCA at high power density with capacities of 80 mAh g–1 obtained after 1000 cycles at 16 C, a value that is 4 times greater than that achieved in the control electrode.
Lithium metal has been an attractive candidate as a next-generation anode material. Despite its popularity, stability issues of lithium in the liquid electrolyte and the formation of lithium whiskers have kept it from practical use. Three-dimensional (3D) current collectors have been proposed as an effective method to mitigate whisker growth. Although extensive research has been done, the effects of three key parameters of the 3D current collectors, namely, the surface area, the tortuosity factor, and the surface chemistry, on the performance of lithium metal batteries remain elusive. Herein, we quantitatively studied the role of these three parameters by synthesizing four types of porous copper networks with different sizes of well-structured microchannels. X-ray microscale computed tomography (micro-CT) allowed us to assess the surface area, the pore size, and the tortuosity factor of the porous copper materials. A metallic Zn coating was also applied to study the influence of surface chemistry on the performance of the 3D current collectors. The effects of these parameters on the performance were studied in detail through scanning electron microscopy (SEM) and titration gas chromatography (TGC). Stochastic simulations further allowed us to interpret the role of the tortuosity factor in lithiation. The optimal range of the key parameters is thereby found for the porous coppers and their performance is predicted. Using these parameters to inform the design of porous copper anodes for Li deposition, Coulombic efficiencies (CEs) of up to 99.63% are achieved, thus paving the way for the design of effective 3D current collector systems.
Using a combination of cycloaddition-retroelectrocyclization reaction, free-base and zinc porphyrins (H 2 P and ZnP) are decorated at their β-pyrrole positions with strong charge transfer complexes, viz., tetracyanobuta-1,3-diene (TCBD)-phenothiazine (3 and 4) or TCBD-aniline (7 and 8), novel class of push-pull systems. The physico-chemical properties of these compounds (MP-Donor and MP-TCBD-Donor) have been investigated using a range of electrochemical, spectroelectrochemical, DFT as well as steady-state and time-resolved spectroscopic techniques. Ground-state charge transfer interactions between the porphyrin and the electron-withdrawing TCBD directly attached to the porphyrin π-system extended the absorption features well into the near-infrared region. To visualize the photo-events, energy level diagrams with the help of free-energy calculations have been established. Switching the role of porphyrin from the initial electron acceptor to electron donor was possible to envision. Occurrence of photoinduced charge separation has been established by complementary transient absorption spectral studies followed by global and target data analyses. Better charge stabilization in H 2 P derived over ZnP derived conjugates, and in phenothiazine derived over aniline derived conjugates has been possible to establish. These findings highlight the importance of the nature of porphyrins and second electron donor in governing the ground and excited state charge transfer events in closely positioned donoracceptor conjugates.
Tin-based alloying anodes are exciting due to their high energy density. Unfortunately, these materials pulverize after repetitive cycling due to the large volume expansion during lithiation and delithiation; both nanostructuring and intermetallic formation can help alleviate this structural damage. Here, these ideas are combined in nanoporous antimony–tin (NP-SbSn) powders, synthesized by a simple and scalable selective-etching method. The NP-SbSn exhibits bimodal porosity that facilitates electrolyte diffusion; those void spaces, combined with the presence of two metals that alloy with lithium at different potentials, further provide a buffer against volume change. This stabilizes the structure to give NP-SbSn good cycle life (595 mAh/g after 100 cycles with 93% capacity retention). Operando transmission X-ray microscopy (TXM) showed that during cycling NP-SbSn expands by only 60% in area and then contracts back nearly to its original size with no physical disintegration. The pores shrink during lithiation as the pore walls expand into the pore space and then relax back to their initial size during delithiation with almost no degradation. Importantly, the pores remained open even in the fully lithiated state, and structures are in good physical condition after the 36th cycle. The results of this work should thus be useful for designing nanoscale structures in alloying anodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.