The formation of luminescent supramolecular ternary complexes in water: delayed luminescence sensing of aromatic carboxylates using coordinated unsaturated cationic heptadenatate lanthanide ion complexes.
The cationic cyclen based Eu(III)-phen conjugated 1.Eu was synthesised as a chemosensor for Cu(II), where the recognition in water at pH 7.4 gave rise to quenching of the Eu(III) luminescence and the formation of tetranuclear polymetallic Cu(II)-Eu(III) macrocyclic complexes in solution where Cu(II) was bound by three 1.Eu conjugates.
The coordinately unsaturated terbium complexes Tb.1 and Tb.2 possess two labile metal-bound water molecules that can be displaced upon metal chelation to aromatic carboxylic anions such as salicylic acid in water, which gives rise to large enhancements in the Tb(III) luminescence.
The synthesis and photophysical properties of a coordinatively unsaturated cationic dinuclear terbium complex, 2.Tb(2), that can detect the presence of mono- or bis(carboxylates) in buffered aqueous solution at physiological pH is described. Full ligand synthesis and structural characterization of 2.Na(2) are also described. Spectroscopic measurements determined that each Tb(III) metal center has two metal-bound water molecules (q = 2). The recognition or sensing of N,N-dimethylaminocarboxylic acid, 4, and the bis(carboxylate) terephthalic acid, 5, which can also function as sensitizing antennae, was found to occur through the binding of these carboxylates to the metal center via the displacement of the metal bound water molecules. This gave rise to the formation of luminescent ternary complexes in solution in 2:1 or 1:1 (ion:2.Tb(2)) stoichiometry, respectively. Aliphatic bis(carboxylates) also bind to 2.Tb(2) where the selectivity for the ion recognition and stoichiometry was dictated by the structure of the anion, being most selective for pimelic acid, 6. Binding of either l- or d-tartaric acid gave rise to the formation ternary complex formation, with 2:1 stoichiometry, where the ion recognition resulted in quenching of the lanthanide emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.