Airborne nanoparticles play a key role in climate effects as well as impacting human health. Their small mass and complex chemical composition represent significant challenges for analysis. This work introduces a new ionization method, droplet assisted inlet ionization (DAII), where aqueous droplets are produced from airborne nanoparticles. When these droplets enter the mass spectrometer through a heated inlet, rapid vaporization leads to the formation of molecular ions. The method is demonstrated with test aerosols consisting of polypropylene glycol (PPG), angiotensin II, bovine serum albumin, and the "thermometer" compound p-methoxybenzylpyridinium chloride. High-quality spectra were obtained from PPG particles down to 13 nm in diameter and sampled masses in the low pictogram range. These correspond to aerosol number and mass concentrations smaller than 1000 particles/cm and 100 ng/m, respectively, and a time resolution on the order of seconds. Fragmentation of the thermometer ion using DAII was inlet temperature dependent and similar in magnitude to that observed with a conventional ESI source on the same instrument. DAII should be applicable to other types of aerosols including workplace aerosols and those produced for drug delivery by inhalation.
Abstract. First results are reported using a simple, fast, and reproducible matrixassisted ionization (MAI) sample introduction method that provides substantial improvements relative to previously published MAI methods. The sensitivity of the new MAI methods, which requires no laser, high voltage, or nebulizing gas, is comparable to those reported for MALDI-TOF and n-ESI. High resolution full acquisition mass spectra having low chemical background are acquired from low nanoliters of solution using only a few femtomoles of analyte. The limit-of-detection for angiotensin II is less than 50 amol on an Orbitrap Exactive mass spectrometer. Analysis of peptides, including a bovine serum albumin digest, and drugs, including drugs in urine without a purification step, are reported using a 1 μL zero dead volume syringe in which only the analyte solution wetting the walls of the syringe needle is used in the analysis.
Dimers and higher order oligomers, whether in the gas or particle phase, can affect important atmospheric processes such as new particle formation, and gas-particle partitioning. In this study, the thermodynamics of dimer formation from various oxidation products of α-pinene ozonolysis are investigated using a combination of Monte Carlo configuration sampling, semi-empirical and density functional theory (DFT) quantum mechanics, and continuum solvent modeling. Favorable dimer formation pathways are found to exist in both gas and condensed phases. The free energies of dimer formation are used to calculate equilibrium constants and expected dimer concentrations under a variety of conditions. In the gas phase, favorable pathways studied include formation of non-covalent dimers of terpenylic acid and/or cis-pinic acid and a covalently-bound peroxyhemiacetal. Under atmospherically relevant conditions, only terpenylic acid forms a dimer in sufficient quantities to contribute to new particle formation. Under conditions typically used in laboratory experiments, several dimer formation pathways may contribute to particle formation. In the condensed phase, non-covalent dimers of terpenylic acid and/or cis-pinic acid and covalently-bound dimers representing a peroxyhemiacetal and a hydrated aldol are favorably formed. Dimer formation is both solution and temperature dependent. A water-like solution appears to promote dimer formation over methanol- or acetonitrile-like solutions. Heating from 298 K to 373 K causes extensive decomposition back to monomers. Dimers that are not favorably formed in either the gas or condensed phase include hemi-acetal, ester, anhydride, and the di(α-hydroxy) ether.
Nanoparticles are the largest fraction of aerosol loading by number. Knowledge of the chemical components present in nanoparticulate matter is needed to understand nanoparticle health and climatic impacts. In this work, we present field measurements using the Nano Aerosol Mass Spectrometer (NAMS), which provides quantitative elemental composition of nanoparticles around 20 nm diameter. NAMS measurements indicate that the element silicon (Si) is a frequent component of nanoparticles. Nanoparticulate Si is most abundant in locations heavily impacted by anthropogenic activities. Wind direction correlations suggest the sources of Si are diffuse, and diurnal trends suggest nanoparticulate Si may result from photochemical processing of gas phase Si-containing compounds, such as cyclic siloxanes. Atmospheric modeling of oxidized cyclic siloxanes is consistent with a diffuse photochemical source of aerosol Si. More broadly, these observations indicate a previously overlooked anthropogenic source of nanoaerosol mass. Further investigation is needed to fully resolve its atmospheric role.
Atmospheric new particle formation (NPF) produces large numbers of nanoparticles which can ultimately impact climate. A firm understanding of the identity and contribution of the inorganic and carbonaceous species to nanoparticle growth is required to assess the climatic importance of NPF. Here, we combine elemental and molecular nanoparticle composition measurements to better define the composition and contribution of carbonaceous matter to nanoparticle growth in a rural/coastal environment. We show that carbonaceous matter can account for more than half of the mass growth of nanoparticles and its composition is consistent with that expected for extremely low volatility organic compounds. An important novel finding is that the carbonaceous matter must contain a substantial amount of nitrogen, whose molecular identity is not fully understood. The results advance our quantitative understanding of the composition and contribution of carbonaceous matter to nanoparticle growth, which is essential to more accurately predict the climatic impacts of NPF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.