Platinum catalysts are extensively used in the chemical industry and as electrocatalysts in fuel cells. Pt is notorious for its sensitivity to poisoning by strong CO adsorption. Here we demonstrate that the single-atom alloy (SAA) strategy applied to Pt reduces the binding strength of CO while maintaining catalytic performance. By using surface sensitive studies, we determined the binding strength of CO to different Pt ensembles, and this in turn guided the preparation of PtCu alloy nanoparticles (NPs). The atomic ratio Pt:Cu = 1:125 yielded a SAA which exhibited excellent CO tolerance in H2 activation, the key elementary step for hydrogenation and hydrogen electro-oxidation. As a probe reaction, the selective hydrogenation of acetylene to ethene was performed under flow conditions on the SAA NPs supported on alumina without activity loss in the presence of CO. The ability to maintain reactivity in the presence of CO is vital to other industrial reaction systems, such as hydrocarbon oxidation, electrochemical methanol oxidation, and hydrogen fuel cells.
Key descriptors in hydrogenation catalysis are the nature of the active sites for H2 activation and the adsorption strength of H atoms to the surface. Using atomically resolved model systems of dilute Pd-Au surface alloys and density functional theory calculations, we determine key aspects of H2 activation, diffusion, and desorption. Pd monomers in a Au(111) surface catalyze the dissociative adsorption of H2 at temperatures as low as 85 K, a process previously expected to require contiguous Pd sites. H atoms preside at the Pd sites and desorb at temperatures significantly lower than those from pure Pd (175 versus 310 K). This facile H2 activation and weak adsorption of H atom intermediates are key requirements for active and selective hydrogenations. We also demonstrate weak adsorption of CO, a common catalyst poison, which is sufficient to force H atoms to spill over from Pd to Au sites, as evidenced by low-temperature H2 desorption.
Plasmonic nanostructures have been proposed as useful materials for photon harvesting applications. However, the mechanisms by which energy transfer occurs across interfaces formed between plasmonic materials and their environment are under debate. A commonly invoked mechanism is indirect hot charge carrier transfer, where hot carriers are generated in the plasmonic material by nonradiatve plasmon decay, followed by transfer of these carriers to interfacial species in a sequential process. Alternatively, chemical interface damping has been reported to allow direct interaction between surface plasmons and interfacial species electronic states. Here we provide evidence from experiment and theory that for plasmon-mediated catalytic O 2 dissociation on Ag plasmonic nanoparticles, the direct interaction of O 2 molecules with surface plasmon near-fields was responsible for observed photocatalysis. These results offer important mechanistic insights for the design of plasmonic materials that maximize efficiency for promoting catalytic small molecule activation using photon fluxes.
Copper is a common catalyst for many important chemical reactions including low-temperature water gas shift, selective catalytic reduction of NO x , methanol synthesis, methanol steam reforming, and partial oxidation of methanol. The degree of surface oxidation, or the oxidation state of the active site, during these reactions has been debated and is known to have a large influence on the reaction rates. Therefore, elucidating the atomic-scale structure of copper surface oxides is an important step toward a fuller understanding of reaction mechanisms in heterogeneous catalysis. The so-called “29” monolayer oxide film is a common intermediate in the oxidation of Cu(111). The large size of its unit cell has thus far prevented the development of a definitive model for its structure. Using high-resolution scanning tunneling microscopy (STM) and density functional theory (DFT) calculations, we arrive at a model for the “29” Cu x O film on Cu(111). There is very good agreement between experimental and computational STM images over a range of biases. Through the construction of a phase diagram from first-principles, we further find that the “29” structure derived from the DFT calculations is indeed the most stable structure under the experimental conditions considered. This work yields an accurate picture of the atomic scale structure of the “29” oxide film and therefore a basis for beginning to understand adsorption sites and reaction mechanisms on this catalytically relevant surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.