We propose a solution to the conflict between fairness and efficiency in one-sided matching markets. A matching is essentially stable if any priority-based claim initiates a chain of reassignments that results in the initial claimant losing the object. We show that an essentially stable and Pareto efficient matching always exists and that Kesten's (2010) EADA mechanism always selects one while other common Pareto efficient mechanisms do not. Additionally, we show that there exists a student-pessimal essentially stable matching and that the Rural Hospital Theorem extends to essential stability. Finally, we analyze the incentive properties of essentially stable mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.