The ignition, oxidation, and pyrolysis chemistry of methyl propyl ether (MPE) was probed experimentally at several different conditions, and a comprehensive chemical kinetic model was constructed to help understand the observations, with many of the key parameters computed using quantum chemistry and transition state theory. Experiments were carried out in a shock tube measuring time variation of CO concentrations, in a flow tube measuring product concentrations, and in a rapid compression machine (RCM) measuring ignition delay times. The detailed reaction mechanism was constructed using the Reaction Mechanism Generator software. Sensitivity and flux analyses were used to identify key rate and thermochemical parameters, which were then computed using quantum chemistry to improve the mechanism. Validation of the final model against the 1–20 bar 600–1500 K experimental data is presented with a discussion of the kinetics. The model is in excellent agreement with most of the shock tube and RCM data. Strong non‐monotonic variation in conversion and product distribution is observed in the flow‐tube experiments as the temperature is increased, and unusually strong pressure dependence and significant heat release during the compression stroke is observed in the RCM experiments. These observations are largely explained by a close competition between radical decomposition and addition to O2 at different sites in MPE; this causes small shifts in conditions to lead to big shifts in the dominant reaction pathways. The validated mechanism was used to study the chemistry occurring during ignition in a diesel engine, simulated using Ignition Quality Test (IQT) conditions. At the IQT conditions, where the MPE concentration is higher, bimolecular reactions of peroxy radicals are much more important than in the RCM.
Soot emissions in combustion are unwanted consequences of burning hydrocarbon fuels. The presence of soot during and following combustion processes is an indication of incomplete combustion and has several negative consequences including the emission of harmful particulates and increased operational costs. Efforts have been made to reduce soot production in combustion engines through utilizing oxygenated biofuels in lieu of traditional nonoxygenated feedstocks. The ongoing Co-Optimization of Fuels and Engines (Co-Optima) initiative from the US Department of Energy (DOE) is focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The Co-Optima program has identified a handful of biofuel compounds from a list of thousands of potential candidates. In this study, a shock tube was used to evaluate the performance of soot reduction of five high-performance biofuels downselected by the Co-Optima program. Current experiments were performed at test conditions between 1,700 and 2,100 K and 4 and 4.7 atm using shock tube and ultrafast, time-resolve laser absorption diagnostic techniques. The combination of shock heating and nonintrusive laser detection provides a state-of-the-art test platform for high-temperature soot formation under engine conditions. Soot reduction was found in ethanol, cyclopentanone, and methyl acetate; conversely, an α-diisobutylene and methyl furan produced more soot compared to the baseline over longer test times. For each biofuel, several reaction pathways that lead towards soot production were identified. The data collected in these experiments are valuable information for the future of renewable biofuel development and their applicability in engines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.