A common way of studying developmental disorders is to adopt a static neuropsychological deficit approach, in which the brain is characterized in terms of a normal brain with some parts or`modules' impaired. In this paper we outline a neuroconstructivist approach in which developmental disorders are viewed as alternative developmental trajectories in the emergence of representations within neural networks. As a concrete instantiation of the assumptions underlying this general approach, we present a number of simulations in an artificial neural network model. The representations that emerge under different architectural, input and developmental timing conditions are then analysed within a multidimensional state space. We explore alternative developmental trajectories in these simulations, demonstrating how initial differences in the same parameter can lead to very different outcomes, and conversely how different starting states can sometimes result in similar end states (phenotypes). We conclude that the assumptions of the neuroconstructivist approach are likely to be more appropriate for analysing developmental deviations in complex dynamic neural networks, such as the human brain.
This paper reports on the use of bent-beam electrothermal actuators for the purpose of generating rotary and long-throw rectilinear displacements. The rotary displacements are achieved by orthogonally arranged pairs of cascaded actuators that are used to rotate a gear. Devices were fabricated using electroplated Ni, p ++ Si, and polysilicon as structural materials. Displacements of 20-30 m with loading forces 150 N at actuation voltages 12 V and power dissipation 300 mW could be achieved in the orthogonally arranged actuator pairs. A design that occupies 1 mm 2 area is presented. Long-throw rectilinear displacements were achieved by inchworm mechanisms in which pairs of opposing actuators grip and shift a central shank that is cantilevered on a flexible suspension. A passive lock holds the displaced shank between pushes and when the power is off. This arrangement permits large output forces to be developed at large displacements, and requires zero standby power. Several designs were fabricated using electroplated Ni as the structural material. Forces 200 N at displacements 100 m were measured.[624]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.