An ideal bone substitute should be made of biocompatible materials that mimic the structure, characteristics, and functions of natural bone. Many researchers have worked on the fabrication of different bone scaffold systems including ceramic-polymer hybrid system. In the present study, we incorporated hyaluronic acid-gelatin hydrogel to micro-channeled biphasic calcium phosphate granules as a carrier to improve cell attachment and proliferation through highly interconnected porous structure. This hybrid system is composed of ceramic biphasic calcium phosphate granules measuring 1 mm in diameter with seven holes and hyaluronic acid-gelatin hydrogel. This combination of biphasic calcium phosphate and hyaluronic acid-gelatin retained suitable characteristics for bone regeneration. The resulting scaffold had a porosity of 56% with a suitable pore sizes. The mechanical strength of biphasic calcium phosphate granule increased after loading hyaluronic acid-gelatin from 4.26 ± 0.43 to 6.57 ± 0.25 MPa, which is highly recommended for cancellous bone substitution. Swelling and degradation rates decreased in the hybrid scaffold compared to hydrogel due to the presence of granules in hybrid scaffold. In vitro cytocompatibility studies were observed by preosteoblasts (MC3T3-E1) cell line and the result revealed that biphasic calcium phosphate/hyaluronic acid-gelatin significantly increased cell growth and proliferation compared to biphasic calcium phosphate granules. Analysis of micro-computed tomography data and stained tissue sections from the implanted samples showed that the hybrid scaffold had good osseointegration and better bone formation in the scaffold one and two months postimplantation. Histological section confirmed the formation of dense collagenous tissue and new bone in biphasic calcium phosphate/hyaluronic acid-gelatin scaffolds at two months. Our study demonstrated that such hybrid biphasic calcium phosphate/hyaluronic acid-gelatin scaffold is a promising system for bone regeneration.
Background: Magnesium (Mg)-based alloys are considered to be promising materials for implant application due to their excellent biocompatibility, biodegradability, and mechanical properties close to bone. However, low corrosion resistance and fast degradation are limiting their application. Mg-Ca alloys have huge potential owing to a similar density to bone, good corrosion resistance, and as Mg is essential for Ca incorporation into bone. The objective of the present work is to determine the in vitro degradation and in vivo performance of binary Mg-xCa alloy (x = 0.5 or 5.0 wt%) to assess its usability for degradable implant applications. Methods: Microstructural evolutions for Mg-xCa alloys were characterized by optical, SEM, EDX, and XRD. In vitro degradation tests were conducted via immersion test in phosphate buffer saline solution. In vivo performance in terms of interface, biocompatibility, and biodegradability of Mg-xCa alloys was examined by implanting samples into rabbit femoral condyle for 2 and 4 weeks. Results: Microstructural results showed the enhancement in intermetallic Mg 2 Ca phase with increase in Ca content. Immersion tests revealed that the dissolution rate varies linearly, with Ca content exhibiting more hydrogen gas evolution, increased pH, and higher degradation for Mg-5.0Ca alloy. In vivo studies showed good biocompatibility with enhanced bone formation for Mg-0.5Ca after 4 weeks of implantation compared with Mg-5.0Ca alloy. Higher initial corrosion rate with prolonged inflammation and rapid degradation was noticed in Mg-5.0Ca compared with Mg-0.5Ca alloy. Conclusions: The results suggest that Mg-0.5Ca alloy could be used as a temporary biodegradable implant material for clinical applications owing to its controlled in vivo degradation, reduced inflammation, and high bone-formation capability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.