Small, noncoding microRNAs (miRNAs) have been shown to be abnormally expressed in every tumor type examined. We used comparisons of global miRNA expression profiles of head and neck squamous cell carcinoma (HNSCC) samples and adjacent normal tissue to rank those miRNAs that were most significantly altered in our patient population. Rank Consistency Score analysis revealed miR-375 to have the most significantly lowered miRNA levels in tumors relative to matched adjacent nonmalignant tissue from the same patient among 736 miRNAs that were evaluated. This result has been previously observed by other groups; however, we extend this finding with the unique observation that low miR-375 expression levels correlate significantly with cancer survival and distant metastasis. In a study of 123 primary HNSCC patients using multivariable Cox proportional hazard ratios (HR) and 95% confidence intervals (CI), both death from disease (HR: 12.8, 95% CI: 3 to 49) and incidence of distant metastasis (HR: 8.7, 95% CI: 2 to 31) correlated with lower expression levels of miR-375 regardless of the site or stage of the tumor. In addition, we found that oral cavity tumor cell lines (eg, UMSCC1 and UMSCC47) overexpressing miR-375 were significantly less invasive in vitro than their matched empty vector controls. We conclude that miR-375 represents a potential prognostic marker of poor outcome and metastasis in HNSCC and that it may function by suppressing the tumor's invasive properties.
Invasive lobular carcinoma (ILC) of the breast, characterized by loss of E-cadherin expression, accounts for 5-15% of invasive breast cancers and it is believed to arise via a linear histological progression. Genomic studies have identified a clonal relationship between ILC and concurrent lobular carcinoma in situ (LCIS) lesions, suggesting that LCIS may be a precursor lesion. It has been shown that an LCIS diagnosis confers a 15-20% risk of progression to ILC over a lifetime. Currently no molecular test or markers can identify LCIS lesions likely to progress to ILC. Since microRNA (miRNA) expression changes have been detected in a number of other cancer types, we explored whether their dysregulation might be detected during progression from LCIS to ILC. Using the Illumina miRNA profiling platform, designed for simultaneous analysis of 470 mature miRNAs, we analysed the profiles of archived normal breast epithelium, LCIS lesions found alone, LCIS lesions concurrent with ILC, and the concurrent ILCs as a model of linear histological progression towards ILC. We identified two sets of differentially expressed miRNAs, the first set highly expressed in normal epithelium, including hsa-miR-224, -139, -10b, -450, 140, and -365, and the second set up-regulated during lobular neoplasia progression, including hsa-miR-375, -203, -425-5p, -183, -565, and -182. Using quantitative RT-PCR, we validated a trend of increasing expression for hsa-miR-375, hsa-miR-182, and hsa-miR-183 correlating with ILC progression. As we detected increased expression of hsa-miR-375 in LCIS lesions synchronous with ILC, we sought to determine whether hsa-miR-375 might induce phenotypes reminiscent of lobular neoplasia by expressing it in the MCF-10A 3D culture model of mammary acinar morphogenesis. Increased expression of hsa-miR-375 resulted in loss of cellular organization and acquisition of a hyperplastic phenotype. These data suggest that dysregulated miRNA expression contributes to lobular neoplastic progression.
Circulating nucleic acids, encapsulated within small extracellular vesicles (EVs), provide a remote cellular snapshot of biomarkers derived from diseased tissues, however selective isolation is critical. Current laboratory‐based purification techniques rely on the physical properties of small‐EVs rather than their inherited cellular fingerprints. We established a highly‐selective purification assay, termed EV‐CATCHER, initially designed for high‐throughput analysis of low‐abundance small‐RNA cargos by next‐generation sequencing. We demonstrated its selectivity by specifically isolating and sequencing small‐RNAs from mouse small‐EVs spiked into human plasma. Western blotting, nanoparticle tracking, and transmission electron microscopy were used to validate and quantify the capture and release of intact small‐EVs. As proof‐of‐principle for sensitive detection of circulating miRNAs, we compared small‐RNA sequencing data from a subset of small‐EVs serum‐purified with EV‐CATCHER to data from whole serum, using samples from a small cohort of recently hospitalized Covid‐19 patients. We identified and validated, only in small‐EVs, hsa‐miR‐146a and hsa‐miR‐126‐3p to be significantly downregulated with disease severity. Separately, using convalescent sera from recovered Covid‐19 patients with high anti‐spike IgG titers, we confirmed the neutralizing properties, against SARS‐CoV‐2 in vitro, of a subset of small‐EVs serum‐purified by EV‐CATCHER, as initially observed with ultracentrifuged small‐EVs. Altogether our data highlight the sensitivity and versatility of EV‐CATCHER.
BackgroundRetrospective studies of archived human specimens, with known clinical follow-up, are used to identify predictive and prognostic molecular markers of disease. Due to biochemical differences, however, formalin-fixed paraffin-embedded (FFPE) DNA and RNA have generally been extracted separately from either different tissue sections or from the same section by dividing the digested tissue. The former limits accurate correlation whilst the latter is impractical when utilizing rare or limited archived specimens.Principal FindingsFor effective recovery of genomic DNA and total RNA from a single FFPE specimen, without splitting the proteinase-K digested tissue solution, we optimized a co-extraction method by using TRIzol and purifying DNA from the lower aqueous and RNA from the upper organic phases. Using a series of seven different archived specimens, we evaluated the total amounts of genomic DNA and total RNA recovered by our TRIzol-based co-extraction method and compared our results with those from two commercial kits, the Qiagen AllPrep DNA/RNA FFPE kit, for co-extraction, and the Ambion RecoverAll™ Total Nucleic Acid Isolation kit, for separate extraction of FFPE-DNA and -RNA. Then, to accurately assess the quality of DNA and RNA co-extracted from a single FFPE specimen, we used qRT-PCR, gene expression profiling and methylation assays to analyze microRNAs, mRNAs, and genomic DNA recovered from matched fresh and FFPE MCF10A cells. These experiments show that the TRIzol-based co-extraction method provides larger amounts of FFPE-DNA and –RNA than the two other methods, and particularly provides higher quality microRNAs and genomic DNA for subsequent molecular analyses.SignificanceWe determined that co-extraction of genomic DNA and total RNA from a single FFPE specimen is an effective recovery approach to obtain high-quality material for parallel molecular and high-throughput analyses. Our optimized approach provides the option of collecting DNA, which would otherwise be discarded or degraded, for additional or subsequent studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.