To date, only several microporous, and even fewer nanoporous, glasses have been produced, always via post synthesis acid treatment of phase separated dense materials, e.g. Vycor glass. In comparison, high internal surface areas are readily achieved in crystalline materials, such as metal-organic frameworks (MOFs). It has recently been discovered that a new family of melt quenched glasses can be produced from MOFs, though they have thus far have lacked the accessible and intrinsic porosity of their crystalline precursors. Here, we report the first glasses that are permanently, and reversibly porous toward incoming gases, without post synthetic treatment. We characterized the structure of these glasses using a range of experimental techniques, and demonstrate pores in the 4-8 angstrom range. The discovery of MOF-glasses with permanent accessible porosity reveals a new category of porous glass materials, that are potentially elevated beyond conventional inorganic and organic porous glasses, by their diversity and tunability.
Lower extremity powered exoskeletons (LEPEs) allow people with spinal cord injury (SCI) to stand and walk. However, the majority of LEPEs walk slowly and users can become fatigued from overuse of forearm crutches, suggesting LEPE design can be enhanced. Virtual prototyping is a cost-effective way of improving design; therefore, this research developed and validated two models that simulate walking with the Bionik Laboratories' ARKE exoskeleton attached to a human musculoskeletal model. The first model was driven by kinematic data from 30 able-bodied participants walking at realistic slow walking speeds (0.2-0.8 m/s) and accurately predicted ground reaction forces (GRF) for all speeds. The second model added upper limb crutches and was driven by 3-D-marker data from five SCI participants walking with ARKE. Vertical GRF had the strongest correlations (>0.90) and root-mean-square error (RMSE) and mediolateral center of pressure trajectory had the weakest (<0.35), for both models. Strong correlations and small RMSE between predicted and measured GRFs support the use of these models for optimizing LEPE joint mechanics and improving LEPE design.
Sex-related differences in neuromuscular activation have been previously identified and are thought to be an underlying contributor to the ACL injury mechanism. During dynamic tasks evaluating the role of muscle action as it relates to joint stability is difficult since individual muscle contributions to force generation are confounded by biomechanical factors of movement. The purpose of this study was to examine sex-related differences in knee muscle action during a weight-bearing isometric exercise and identify the stabilising role of these muscles. Healthy young adults stood with their dominant leg in a boot fixed to a force platform. A force matching protocol required participants to modulate normalised ground reaction forces in various combinations of anterior-posterior, medial-lateral loads while maintaining a constant joint position. Normalised electromyographic data of eight muscles crossing the knee joint were displayed in polar plots. Patterns were quantified with an orientation analysis and mean activation magnitudes were computed. Females demonstrated symmetrical activation patterns with significantly greater activation in the rectus femoris (p ¼ 0.037), lateral gastrocnemius (p ¼ 0.012), and tensor fascia lata (p ¼ 0.005) compared to males. High between-subject reliability (ICC ¼ 0.772-0.977) was observed across groups suggesting we have identified fundamental sex-related differences in knee joint stabilisation strategies. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.