Faller classification in elderly populations can facilitate preventative care before a fall occurs. A novel wearable-sensor based faller classification method for the elderly was developed using accelerometer-based features from straight walking and turns. Seventy-six older individuals (74.15 ± 7.0 years), categorized as prospective fallers and non-fallers, completed a six-minute walk test with accelerometers attached to their lower legs and pelvis. After segmenting straight and turn sections, cross validation tests were conducted on straight and turn walking features to assess classification performance. The best “classifier model—feature selector” combination used turn data, random forest classifier, and select-5-best feature selector (73.4% accuracy, 60.5% sensitivity, 82.0% specificity, and 0.44 Matthew’s Correlation Coefficient (MCC)). Using only the most frequently occurring features, a feature subset (minimum of anterior-posterior ratio of even/odd harmonics for right shank, standard deviation (SD) of anterior left shank acceleration SD, SD of mean anterior left shank acceleration, maximum of medial-lateral first quartile of Fourier transform (FQFFT) for lower back, maximum of anterior-posterior FQFFT for lower back) achieved better classification results, with 77.3% accuracy, 66.1% sensitivity, 84.7% specificity, and 0.52 MCC score. All classification performance metrics improved when turn data was used for faller classification, compared to straight walking data. Combining turn and straight walking features decreased performance metrics compared to turn features for similar classifier model—feature selector combinations.
Lower extremity powered exoskeletons (LEPEs) allow people with spinal cord injury (SCI) to stand and walk. However, the majority of LEPEs walk slowly and users can become fatigued from overuse of forearm crutches, suggesting LEPE design can be enhanced. Virtual prototyping is a cost-effective way of improving design; therefore, this research developed and validated two models that simulate walking with the Bionik Laboratories' ARKE exoskeleton attached to a human musculoskeletal model. The first model was driven by kinematic data from 30 able-bodied participants walking at realistic slow walking speeds (0.2-0.8 m/s) and accurately predicted ground reaction forces (GRF) for all speeds. The second model added upper limb crutches and was driven by 3-D-marker data from five SCI participants walking with ARKE. Vertical GRF had the strongest correlations (>0.90) and root-mean-square error (RMSE) and mediolateral center of pressure trajectory had the weakest (<0.35), for both models. Strong correlations and small RMSE between predicted and measured GRFs support the use of these models for optimizing LEPE joint mechanics and improving LEPE design.
Wearable sensors could facilitate point of care, clinically feasible assessments of dynamic stability and associated fall risk through an assessment of single-task (ST) and dual-task (DT) walking. This study investigated gait changes between ST and DT walking and between older adult prospective fallers and non-fallers. The results were compared to a study based on retrospective fall occurrence. Seventy-five individuals (75.2 ± 6.6 years; 47 non-fallers, 28 fallers; 6 month prospective fall occurrence) walked 7.62 m under ST and DT conditions while wearing pressure-sensing insoles and accelerometers at the head, pelvis, and on both shanks. DT-induced gait changes included changes in temporal measures, centre of pressure (CoP) path stance deviations and coefficient of variation, acceleration descriptive statistics, Fast Fourier Transform (FFT) first quartile, ratio of even to odd harmonics, and maximum Lyapunov exponent. Compared to non-fallers, prospective fallers had significantly lower DT anterior–posterior CoP path stance coefficient of variation, DT head anterior–posterior FFT first quartile, ST left shank medial–lateral FFT first quartile, and ST right shank superior maximum acceleration. DT-induced gait changes were consistent regardless of faller status or when the fall occurred (retrospective or prospective). Gait differences between fallers and non-fallers were dependent on retrospective or prospective faller identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.