Research describing the match and specific positional demands during match play in women’s collegiate soccer is limited. The purpose of the study was to quantify the match demands of National Collegiate Athletic Association (NCAA) Division III soccer and assess position differences in movement kinematics, heart rate (HR), and energy expenditure. Twenty-five Division III women soccer players (height: 1.61 ± 0.3 m; body mass: 66.7 ± 7.5 kg; fat-free mass: 50.3 ± 6.5 kg; body fat%: 25.6 ± 5.1%) were equipped with a wearable global positioning system to assess the demands of 22 matches throughout a season. Players were categorized by position (goal keepers (GK), center defenders (CB), flank players (FP), forwards (F), and center midfielders (CM)). Players covered 9807 ± 2588 m and 1019 ± 552 m at high speeds (>249.6 m·m−1), with an overall average speed of 62.85 ± 14.7 m·m−1. This resulted in a mean HR of 74.2 ± 6% HR max and energy expenditure of 1259 ± 309 kcal. Significant and meaningful differences in movement kinematics were observed across position groups. CM covered the most distance resulting in the highest training load. FP covered the most distance at high speeds and mean HR values were highest in CM, CB, and FP positions.
The purpose of the current study was to examine the impact of COVID-19 government-enforced shutdown measures on the training habits and perceptions of athletes. A web-based electronic survey was developed and distributed online to athletes. The survey contained questions regarding currently available resources, changes in weekly training habits, and perceptions of training such as intensity, motivation, and enjoyment. A total of 105 (males: n = 31; females: n = 74) athletes completed the survey (mean ± SD age = 19.86 ± 2.13 years). Ninety-nine (94.3%) athletes continued to receive guidance from their primary sport coach or strength training staff. There was a significant (p < 0.001) decrease (mean ± SD) in self-reported participation time for strength training (−1.65 ± 4.32 h. week−1), endurance (−1.47 ± 3.93 h. week−1), and mobility (−1.09 ± 2.24 h. week−1), with the largest reduction coming from participation time in sport-specific activities (−6.44 ± 6.28 h. week−1) pre- to post-shutdown. When asked to rate their current state of emotional well-being using a visual analog scale of 0–100, with 100 being exceptional, the mean score was 51.6 ± 19.6 AU. Athletes experienced notable reductions in training frequency and time spent completing various training related activities. In the future, practitioners should have preparations in place in the event of another lockdown period or future pandemic to avoid or minimize significant disruptions in training. Special considerations may be needed when athletes are allowed to return to sport in the event of significant levels of detraining that may have occurred.
Jagim, AR, Camic, CL, Askow, A, Luedke, J, Erickson, J, Kerksick, CM, Jones, MT, and Oliver, JM. Sex differences in resting metabolic rate among athletes. J Strength Cond Res XX(X): 000-000, 2018-The purpose of this study was to compare differences in resting metabolic rate (RMR) between sexes in Division III National Collegiate Athletic Association (NCAA) collegiate athletes and to identify predictors of RMR. Sixty-eight male (M) (age: 20.1 ± 1.5 years; height: 181.8 ± 5.9 cm; body mass (BM): 93.7 ± 16.3 kg; and body fat%: 16.3 ± 8.6%) and 48 female (F) athletes (age: 19.4 ± 1.3 years; height: 166.5 ± 6.0 cm; BM: 63.4 ± 12.7 kg; and body fat%: 21.5 ± 6.3%) participated in a single day of testing, which included determination of RMR using indirect calorimetry and air displacement plethysmography to measure fat mass and fat-free mass (FFM). An independent-samples t-test was used to compare differences in body composition and RMR between sexes, and regression analysis was used to identify predictors of RMR. Men had a significantly higher absolute RMR (M: 2,481 ± 209 vs. F: 1,553 ± 193 kcals·d; p < 0.001), but when adjusted for BM (M: 25.6 ± 8.3 vs. F: 25.9 ± 2.5 kcals·kg BM per day; p = 0.82) and FFM (M: 31.1 ± 10.6 vs. F: 33.6 ± 3.8 kcals·kg FFM per day; p = 0.12), these differences became nonsignificant. Regression analysis indicated that BM in both men (β = 0.73) and women (β = 0.88) was the strongest predictor of RMR. The results of the current study indicate minimal differences in RMR between sexes among athletic populations when adjusted for BM and FFM. In the current group of athletes, BM seems to account for the largest variability in RMR.
Context The essential omega-3 fatty acids (ω-3 FAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exhibit vital biological roles and are critical for cardiovascular and neurologic health. Compared with the general population, football athletes may be at an increased risk of cardiovascular disease. Further, those same athletes are also exposed to repetitive head impacts, which may lead to long-term neurologic deficits. Both diets high in ω-3 FAs and supplementation with ω-3 FAs have been reported to reduce the risk of cardiovascular disease, and early evidence suggests a potential neuroprotective effect of supplementation. Objective To determine the (1) erythrocyte content of DHA and EPA, as measured by the Omega-3 Index, expressed as a percentage of total fatty acids, in National Collegiate Athletic Association Division I football athletes and (2) distribution across the Omega-3 Index risk zones established for cardiovascular disease: high risk, <4%; intermediate risk, 4% to 8%; and low risk, >8%. Design Cross-sectional descriptive study. Setting Multicenter trial. Patients or Other Participants Deidentified data including complete erythrocyte fatty acid profile from the 2017–2018 season, age at time of testing, height, weight, and ethnicity were collected from 404 athletes. Main Outcome Measure(s) Omega-3 Index. Results About 34% of athletes (n = 138) had an Omega-3 Index considered high risk (<4%), and 66% (n = 266) had a risk considered intermediate (4%–8%). None had a low-risk Omega-3 Index. Conclusions The Omega-3 Index is a simple, minimally invasive test of ω-3 FA status. Our data indicate that football athletes may be deficient in the ω-3 FAs DHA and EPA. The fact that no athlete had an Omega-3 Index associated with low risk suggests football athletes may be at increased risk for cardiovascular disease in later life.
Protein intake above the Recommended Dietary Allowance (RDA) and resistance training are known anabolic stimuli to support healthy aging. Specifically, protein supplementation after resistance exercise and nightly are strategies to maximize utilization of protein intake above the RDA in healthy adults. As such, the primary objective was to examine the efficacy of protein supplementation and nutritional counseling resulting in either moderate (MOD: ~1.0 g·kg−1·d−1) or higher (HIGH: ~1.6 g·kg−1·d−1) protein intake during resistance training on strength (one-repetition maximum, 1-RM; isokinetic and isometric peak torque) in healthy middle-aged adults. Exploratory analyses include diet-exercise effects on lean body mass (LBM), clinical biomarkers, gut microbiota, and diet composition. 50 middle-aged adults (age: 50 ± 8 y, BMI: 27.2 ± 4.1 kg·m-2) were randomized to either MOD or HIGH protein intake during a 10-week resistance training program (3 × week). Participants received dietary counseling and consumed either 15 g (MOD) or 30 g (HIGH) of protein from lean beef in the immediate post-exercise period and each evening. Maximal strength (1-RM) for all upper and lower body exercises significantly increased with no effect of protein intake (P<0.050). There was a main effect of time for LBM (P<0.005). Cardiovascular, renal, or glycemic biomarkers were not affected by the intervention. Gut microbiota were associated with several health outcomes (P<0.050). In conclusion, higher protein intake above moderate amounts does not potentiate resistance training adaptations in previously untrained middle-aged adults. This trial was registered at clinicaltrials.gov as NCT03029975.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.