[1] Element concentration and isotope ratio measurements by single-collector mass spectrometry often require the detection system to handle ion beams with very large intensity ratios. In order to obtain accurate and reproducible element concentration and isotope ratio data, the detection system must have a linear response with respect to the intensity of the incident ion beam. An extended range scaling pulse counting detector equipped on a Varian 810 quadrupole inductively coupled plasma-mass spectrometer (ICP-MS) was tested for linearity across count rates of ∼2000 to 110,000,000 cps with different concentrations of natural U solutions. We also tested detector linearity by the laser ablation analysis of 206 Pb/ 238 U, 207 Pb/ 235 U, and 207 Pb/ 206 Pb ratios in well-characterized 416-1565 Ma zircon standards. Results indicate that there is no correlation between the measured isotope ratio and ion intensity for the solution tests or the tests of natural zircon standards. The results of these tests confirm the suitability of this instrument for isotope ratio measurements that require a substantial dynamic range without having to switch between pulse counting and analog modes on electron multipliers or switching between electron multiplier to Faraday detectors.
The application of open vessel focused microwave acid digestion is described for the preparation of geological and environmental samples for analysis using inductively coupled plasma-mass spectrometry (ICP-MS). The method is compared to conventional closed-vessel high pressure methods which are limited in the use of HF to break down silicates. Open-vessel acid digestion more conveniently enables the use of HF to remove Si from geological and plant samples as volatile SiF4, as well as evaporation-to-dryness and sequential acid addition during the procedure. Rock reference materials (G-2 granite, MRG-1 gabbros, SY-2 syenite, JA-1 andesite, and JB-2 and SRM-688 basalts) and plant reference materials (BCR and IAEA lichens, peach leaves, apple leaves, Durham wheat flour, and pine needles) were digested with results comparable to conventional hotplate digestion. The microwave digestion method gave poor results for granitic samples containing refractory minerals, however fusion was the preferred method of preparation for these samples. Sample preparation time was reduced from several days, using conventional hotplate digestion method, to one hour per sample using our microwave method.
Transformations among different mercury species associated with sediments can have a major effect on the metal's mobility and potential for methylation and hence bioaccumulation. In the present study, various fractions of mercury in the sediments of Vembanad wetland system analysed. Total mercury (THg) concentration in the surface sediment varied from 16.3 to 4,230 ng/g. The results of sequential extraction showed that the major portion of mercury in these sediments existed as elemental form followed by organo-chelated form. The least portion observed was the residual fraction (mercury of natural origin). Even though the percentage of mercury observed in the easily available fractions is relatively small, absolute values of these mobile Hg fractions are quite high due to the very high total mercury values. The fractionation of mercury in the sediment was controlled by the organic matter, sulphur complexes and concentration of THg. The results showed that the bioavailability of mercury is high as the amount of mercury found in the initial three fractions is high, which can also enhance the methylation potential of the Vembanad wetland sediments. The fractionation pattern of mercury also revealed the presence of anthropogenic mercury content in the Vembanad wetland sediments.
A measurement system capable of continuous on-line matrix removal, pre-concentration and analysis of 226Ra using pre-packed columns coupled to a flow injection system and an ICP-MS was developed. Full instrumental control of both the ICP-MS and the flow injection system provided automatic integration of the transient signals. The flow injection system was programmed to control column conditioning, sample loading, column rinsing, analyte elution and column cleaning operations employing appropriate solutions. The application of this system to the 226Ra analysis of an industrial liquid effluent was demonstrated. Using this particular instrument together with pre-concentration and matrix removal procedures, a limit of detection of 5.4 fg L−1 (2 mBq L−1) and a method detection limit of 16.2 fg L−1 (6 mBq L−1) were achieved for the measurement of 226Ra using a 25 mL sample volume. Total time for sample handling and analysis is approximately 10 minutes. The concentration of 226Ra in a discharged effluent sample was 0.73 pg L−1 (27 mBq L−1), which is in good agreement with the value of 0.81 pg L−1 (30 mBq L−1) measured using conventional alpha counting techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.