House dust mite (HDM) allergens are considered to be one of the most common causes of asthma and allergic rhinitis in the world. Cysteine proteases Der p 1 and Der f 1 (group 1) and also NPC 2 family proteins Der p 2 and Der f 2 (group 2) of D. pteronyssinus and D. farinae respectively are considered the main allergens of HDMs. The difference in the sensitivity of the population to these and other allergy causing components of HDM determines the treatment strategy. Thus, the purpose of this work was to determine the pattern of sensitization of the Ukrainian population to individual allergy causing molecular components of HDM in order to improve treatment strategies for the HDM allergy in various regions of Ukraine. To determine the molecular profile of sensitization to HDM, the data of multiplex allergy test Alex2 have been obtained from 10,651 patients. The sample included 57.86% children under the age of 18 and 42.14% adults. A Python language-based statistical analysis was performed, in order to group patients by sensitization to individual molecules and their combinations, regarding the age and geographical location of the patients. Simultaneous sensitization to Der f 2 and Der p 2 allergens was the most common among the entire group Simultaneous sensitization to 5 molecules—of group 1 (Der p 1 and Der f 1), group 2 (Der f 2 and Der p 2), and Der p 23—was the second most common for entire dataset and for the children group. This pattern differed in adults, where monosensitization to Der p 23 occupied the second position, suggesting that this molecule is an important factor of HDM allergy in Ukraine. Of the 16 analyzed regions, sensitization to Der p 23 prevailed in 2 Western regions of Ukraine. In the rest of the regions combination of Der p 2 and Der f 2 was the most prevalent. The established character of population sensitization to HDM in Ukraine is a good prognostic marker of allergen immunotherapy (AIT) efficacy.
Predictive preventive personalized medicine Liver cancer is the fifth most common form of cancer worldwide [1], with an incidence rate almost equals the mortality rate and ranks 3 rd among causes of cancer related death [2]. The coexistence of two life threatening conditions, cancer and liver cirrhosis makes the staging challenging. However, there are some staging systems, e.g. the Barcelona staging system for Hepatocellular carcinoma (HCC) [3], that suggest treatment options and management. Whereas diagnosis in early stages gives hope for a curative outcome, the treatment regime for around 80 % [2] of the patients classified as severe stages only gears towards palliation [4]. An intra-arterial radiation approach, radioembolisation (RE) is ubiquitously applied as one of palliative approaches. Although, in general RE shows promising results in intermediate and advanced stage HCC [5], individual treatment outcomes are currently unpredictable. Corresponding stratification criteria are still unclear. We hypothesised that individual radioresistance/radiosensitivity may play a crucial role in treatment response towards RE strongly influencing individual outcomes. Further, HCC represents a highly heterogeneous group of patients which requires patient stratification according to clear criteria for treatment algorithms to be applied individually. Multilevel diagnostic approach (MLDA) is considered helpful to set-up optimal predictive and prognostic biomarker panel for individualised application of radioembolisation. Besides comprehensive medical imaging, our MLDA includes non-invasive multi-omics and sub-cellular imaging. Individual patient profiles are expected to give a clue to targeting shifted molecular pathways, individual RE susceptibility, treatment response. Hence, a dysregulation of the detoxification pathway (SOD2/Catalase) might indicate possible adverse effects of RE, and highly increased systemic activities of matrix metalloproteinases indicate an enhanced tumour aggressiveness and provide insights into molecular mechanisms/targets. Consequently, an optimal set-up of predictive and prognostic biomarker panels may lead to the changed treatment paradigm from untargeted "treat and wait" to the cost-effective predictive, preventive and personalised approach, improving the life quality and life expectancy of HCC patients. Keywords: Market access, Value, Strategy, Companion diagnostics, Cost-effectiveness, Reimbursement, Health technology assessment, Economic models, Predictive preventive personalized medicine Achieving and sustaining seamless "drug -companion diagnostic" market access requires a sound strategy throughout a product life cycle, which enables timely creation, substantiation and communication of value to key stakeholders [1, 2]. The study aims at understanding the root-cause of market access inefficiencies of companies by gazing at the "Rx-CDx" co-development process through the prism of "value", and developing a perfect co-development scenario based on the literature review and discussions with the ...
Background As the process and nature of developing sensitivity to house dust mites (HDMs) remain not fully studied, our goal was to establish the pattern, nature and timeframe of house dust mite (HDM) sensitization development in patients in Ukraine as well as the period when treatment of such patients would be most effective. Methods The data of the multiplex allergy test Alex2 was collected from 20,033 patients. To determine age specifics of sensitization, descriptive statistics were used. Bayesian Network analysis was used to build probabilistic patterns of individual sensitization. Results Patients from Ukraine were most often sensitized to HDM allergens of group 1 (Der p 1, Der f 1) and group 2 (Der p 2, Der f 2) as well as to Der p 23 (55%). A considerable sensitivity to Der p 5, Der p 7 and Der p 21 allergens was also observed. The overall nature of sensitization to HDM allergens among the population of Ukraine is formed within the first year of life. By this time, there is a pronounced sensitization to HDM allergens of groups 1 and 2 as well as to Der p 23. Significance of sensitization to Der p 5, Der p 7 and Der p 21 allergens grows starting from the age of 3–6. Bayesian Network data analysis indicated the leading role of sensitization to Der p 1 and Der f 2. While developing the sensitivity to group 5 allergens, the leading role may belong to Der p 21 allergen. Conclusion The results obtained indicate the importance of determining the sensitization profile using the multi-component approach. A more detailed study of the optimal age for AIT prescription is required as the pattern of sensitization to HDMs is formed during the first year of life.
Space flights, some physical activities, and extreme sports can greatly alter the gravitational forces experienced by the body. Being a deviation from the constant pull of Earth, these alterations can be considered gravitational stress and have the potential to affect physiological processes. Physical cues play a vital role in the homeostasis and function of the immune system. The effect of recurrent alterations of the gravitational pull on the levels of soluble mediator such as cytokines is unknown. Parabolic flights provide a controlled environment and make these a suitable model to study the effects of gravitational stress. Utilizing this model, we evaluated the effects of short-term gravitational stress on serum concentration of cytokines and other soluble mediators. Blood was taken from 12 healthy volunteers immediately before the first parabola and immediately after the last. Samples taken on the ground at corresponding time points the day before were used to control for circadian effects. A wide range of soluble mediators was analyzed using a multiplex bead assay. We found that the rate-change of eight molecules was significantly affected by the parabolic flight. Among other functions, these molecules, EGF, PDGF-AA, PDGF-BB, HGF, IP-10, Eotaxin (CCL11), TARC, and Angiopoietin-2, can be associated with bone remodeling and immune activation. It is therefore possible that gravitational stress can have clinically relevant impact on the control of a wide range of physiological processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.