Global smartphone sales may have peaked. After reaching nearly 1.5 billion units in 2016, global smartphone sales have since declined, contributing negatively to world trade in 2019 and suggesting that the global market may now be saturated. This paper develops a simple model to forecast smartphone sales, which shows that sales are likely to decline further. As tech companies shift to embedded services (cloud computing, content subscriptions, and financial services), the impact on global trade may also be shifting in favor of services exports mostly from advanced economies.
This paper introduces a simple, frequently and easily updated, close to the data epidemiological model that has been used for near-term forecast and policy analysis. We provide several practical examples of how the model has been used. We explain the epidemic development in the UK, the USA and Brazil through the model lens. Moreover, we show how our model would have predicted that a super infectious variant, such as the delta, would spread and argue that current vaccination levels in many countries are not enough to curb other waves of infections in the future. Finally, we briefly discuss the importance of how to model re-infections in epidemiological models.
An essential element of the work of the Fund is to monitor and forecast international trade. This paper uses SWIFT messages on letters of credit, together with crude oil prices and new export orders of manufacturing Purchasing Managers’ Index (PMI), to improve the short-term forecast of international trade. A horse race between linear regressions and machine-learning algorithms for the world and 40 large economies shows that forecasts based on linear regressions often outperform those based on machine-learning algorithms, confirming the linear relationship between trade and its financing through letters of credit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.