The pectic composition of cell wall is altered during the processes of cell differentiation, plant growth, and development. These alterations may be time-dependent, and fluctuate in distinct regions of the same cell or tissue layer, due to the biotic stress caused by the activity of the gall inducer. Among the roles of the pectins in cell wall, elasticity, rigidity, porosity, and control of cell death may be crucial during gall development. Galls on Baccharis reticularia present species-specific patterns of development leading to related morphotypes where pectins were widely detected by Ruthenium red, and the pectic epitopes were labeled with specific monoclonal antibodies (LM1, LM2, LM5, LM6, JIM5, and JIM7) in distinct sites of the non-galled and the galled tissues. In the studied system B. reticularia, the epitopes for extensins were not labeled in the non-galled tissues, as well as in those of the rolling and kidney-shaped galls. The high methyl-esterified homogalacturonans (HGA) were labeled all over the tissues either of non-galled leaves or of the three gall morphotypes, while the intense labeling for arabinogalactans was obtained just in the rolling galls. The pectic composition of non-galled leaves denotes their maturity. The kidney-shaped gall was the most similar to the non-galled leaves. The pectic dynamics in the gall tissues was particularly altered in relation to low methyl-esterified HGA, which confers elasticity and expansion, as well as porosity and adhesion to cell walls, and are related to the homogenization and hypertrophy of gall cortex, and to translocation of solutes to the larval chamber. Herein, the importance of the pectic dynamics of cell walls to the new functional design established during gall development is discussed for the first time. The repetitive developmental patterns in galls are elegant models for studies on cell differentiation.
RESUMO -(Relações entre o teor de fenóis totais e o ciclo das galhas de Cecidomyiidae em Aspidosperma spruceanum Müll. Arg. (Apocynaceae)). Alterações morfológicas detectadas em diversas espécies vegetais em função da indução de galhas são comumente acompanhadas de mudanças químicas importantes para o estabelecimento e manutenção do sistema galhador-planta hospedeira. O estudo da variação do teor de fenóis totais e sua relação com o desenvolvimento das galhas no sistema Aspidosperma spruceanumCecidomyiidae foi realizado ao longo de um ano, no qual foram detectados pelo menos dois ciclos de vida dos insetos indutores. O nível de infestação foliar foi alto, atingindo 87%, e os Cecidomyiidae tiveram a região internervural como sítio preferencial de oviposição. A variação sazonal no conteúdo de fenóis totais nas amostras de folhas sadias e galhadas foi primariamente relacionada às condições abióticas e muito embora este teor tenha atingido o máximo de 10 mg EAT g -1 , indicando um ambiente químico celular não favorável à indução e a sua sobrevivência, o indutor de A. spruceanum supera esta barreira química, podendo ainda ser favorecido pela proteção contra inimigos naturais propiciada pelos fenólicos.Palavras-chave: Aspidosperma, Cecidomyiidae, galhas, interações inseto-planta, morfometria ABSTRACT -(Relationships between phenolic contents and a Cecidomyiidae gall cycle in Aspidosperma spruceanum Müll. Arg. (Apocynaceae)). Morphological alterations detected in several plant species due to gall induction are commonly followed by chemical changes fundamental to the establishment and maintenance of the host plant-gall maker system. The study of phenolic contents variation and its relation to gall development in Aspidosperma spruceanum-Cecidomyiidae system through a year-time detected two insect life cycles. The level of infestation was high, getting up to 87%, and the Cecidomyiidae preferentially oviposited in internervural region. Seasonal variation in phenolic contents in healthy and galled leaves detected in A. spruceanum was primarily related to abiotic conditions. Even though the levels of phenolic contents might get a maximum of 10 mg EAT g -1 , which indicated a non stimulating cell chemical environment to gall induction and herbivore survivorship, A. spruceanum gall maker surpassed this chemical barrier, and might also be favored by the chemical protection against its natural enemies, that phenolic contents might confer.
Insect galls may be study models to test the distribution of pectins and arabinogalactan-proteins (AGPs) and their related functions during plant cell cycles. These molecules are herein histochemically and immunocitochemically investigated in the kidney-shaped gall induced by Baccharopelma dracunculifoliae (Psyllidae) on leaves of Baccharis dracunculifolia DC. (Asteraceae) on developmental basis. The homogalacturonans (HGAs) (labeled by JIM5) and the arabinans (labeled by LM6) were detected either in non-galled leaves or in young galls, and indicated stiffening of epidermal cell walls, which is an important step for cell redifferentiation. The labeling of HGAs by JIM7 changed from young to senescent stage, with an increase in the rigidity of cell walls, which is important for the acquaintance of the final gall shape and for the mechanical opening of the gall. The variation on the degree of HGAs during gall development indicated differential PMEs activity during gall development. The epitopes recognized by LM2 (AGP glycan) and LM5 (1–4-β-D-galactans) had poor alterations from non-galled leaves towards gall maturation and senescence. Moreover, the dynamics of pectin and AGPs on two comparable mature kidney-shaped galls on B. dracunculifolia and on B. reticularia revealed specific peculiarities. Our results indicate that similar gall morphotypes in cogeneric host species may present distinct cell responses in the subcelular level, and also corroborate the functions proposed in literature for HGAs.
Understanding factors that modulate plant development is still a challenging task in plant biology. Although research has highlighted the role of abiotic and biotic factors in determining final plant structure, we know little of how these factors combine to produce specific developmental patterns. Here, we studied patterns of cell and tissue organisation in galled and non-galled organs of Baccharis reticularia, a Neotropical shrub that hosts over ten species of galling insects. We employed qualitative and quantitative approaches to understand patterns of growth and differentiation in its four most abundant gall morphotypes. We compared two leaf galls induced by sap-sucking Hemiptera and stem galls induced by a Lepidopteran and a Dipteran, Cecidomyiidae. The hypotheses tested were: (i) the more complex the galls, the more distinct they are from their non-galled host; (ii) galls induced on less plastic host organs, e.g. stems, develop under more morphogenetic constraints and, therefore, should be more similar among themselves than galls induced on more plastic organs. We also evaluated the plant sex preference of gall-inducing insects for oviposition. Simple galls were qualitative and quantitatively more similar to non-galled organs than complex galls, thereby supporting the first hypothesis. Unexpectedly, stem galls had more similarities between them than to their host organ, hence only partially supporting the second hypothesis. Similarity among stem galls may be caused by the restrictive pattern of host stems. The opposite trend was observed for host leaves, which generate either similar or distinct gall morphotypes due to their higher phenotypic plasticity. The Relative Distance of Plasticity Index for non-galled stems and stem galls ranged from 0.02 to 0.42. Our results strongly suggest that both tissue plasticity and gall inducer identity interact to determine plant developmental patterns, and therefore, final gall structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.