This paper reports an integrated 64-channel neural spike recording sensor, together with all the circuitry to process and configure the channels, process the neural data, transmit via a wireless link the information and receive the required instructions. Neural signals are acquired, filtered, digitized and compressed in the channels. Additionally, each channel implements an auto-calibration algorithm which individually configures the transfer characteristics of the recording site. The system has two transmission modes; in one case the information captured by the channels is sent as uncompressed raw data; in the other, feature vectors extracted from the detected neural spikes are released. Data streams coming from the channels are serialized by the embedded digital processor. Experimental results, including in vivo measurements, show that the power consumption of the complete system is lower than 330 μW.
Time-of-flight image sensors based on single-photon detection, i.e. SPADs, require some filtering of pixel readings. Accurate depth measurements are only possible if the jitter of the detector is mitigated. Moreover, the time stamp needs to be effectively separated from uncorrelated noise such as dark counts and background illumination. A powerful tool for this is building a histogram of a number of pixel readings. Future generation of ToF imagers are seeking to increase spatial and temporal resolution along with the dynamic range and frame rate. Under these circumstances, storing the complete histogram for every pixel becomes practically impossible. Considering that most of the information contained by the histogram represents noise, we propose a highly efficient method to store just the relevant data required for ToF computation. This method makes use of the shifted inter-frame histogram (SifH). It requires a memory as low as 128 times smaller than storing the complete histogram if the pixel values are coded on up to 15 bits. Moreover, a fixed 2 8 words memory is enough to process histograms containing up to 2 15 bins. In exchange, the overall frame rate only decreases to one half. The hardware implementation of this algorithm is presented. Its remarkable robustness for a low SNR of the ToF estimation is demonstrated by Matlab simulations and FPGA implementation using input data from a SPAD camera prototype. Index Terms-shifted inter-frame histogram (SifH), real-time time-of-flight (ToF) estimation, ToF image sensor, single-photon avalanche-diode (SPAD)
This paper reports an integrated 64-channel neural recording sensor. Neural signals are acquired, filtered, digitized and compressed in the channels. Additionally, each channel implements an auto-calibration mechanism which configures the transfer characteristics of the recording site. The system has two transmission modes; in one case the information captured by the channels is sent as uncompressed raw data; in the other, feature vectors extracted from the detected neural spikes are released. Data streams coming from the channels are serialized by an embedded digital processor. Experimental results, including in vivo measurements, show that the power consumption of the complete system is lower than 330μW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.