Newborns acquire their first microbiota at birth. Maternal vaginal or skin bacteria colonize newborns delivered vaginally or by C-section, respectively (Dominguez-Bello et al. 2010 #884). We aimed to determine differences in the presence of four tetracycline (tet) resistance genes, in the microbes of ten newborns and in the mouth and vagina of their mothers, at the time of birth. DNA was amplified by PCR with primers specific for [tet(M), tet(O), tet(Q), and tet(W)]. Maternal vaginas harbored all four tet resistance genes, but most commonly tet(M) and tet(O) (63 and 38 %, respectively). Genes coding for tet resistance differed by birth mode, with 50 % of vaginally delivered babies had tet(M) and tet(O) and 16 and 13 % of infants born by C-section had tet(O) and tet(W), respectively. Newborns acquire antibiotic resistance genes at birth, and the resistance gene profile varies by mode of delivery.
The spider major ampullate (MA) silk exhibits high tensile strength and extensibility and is typically a blend of MaSp1 and MaSp2 proteins with the latter comprising glycine–proline–glycine–glycine-X repeating motifs that promote extensibility and supercontraction. The MA silk from Darwin's bark spider (
Caerostris darwini
) is estimated to be two to three times tougher than the MA silk from other spider species. Previous research suggests that a unique MaSp4 protein incorporates proline into a novel glycine–proline–glycine–proline motif and may explain
C. darwini
MA silk's extraordinary toughness. However, no direct correlation has been made between the silk's molecular structure and its mechanical properties for
C. darwini
. Here, we correlate the relative protein secondary structure composition of MA silk from
C. darwini
and four other spider species with mechanical properties before and after supercontraction to understand the effect of the additional MaSp4 protein. Our results demonstrate that
C. darwini
MA silk possesses a unique protein composition with a lower ratio of helices (31%) and β-sheets (20%) than other species. Before supercontraction, toughness, modulus and tensile strength correlate with percentages of β-sheets, unordered or random coiled regions and β-turns. However, after supercontraction, only modulus and strain at break correlate with percentages of β-sheets and β-turns. Our study highlights that additional information including crystal size and crystal and chain orientation is necessary to build a complete structure–property correlation model.
Spider viscid silk adheres to insects in orb webs and is a “smart-adhesive” that quickly changes droplet size, viscosity, and adhesiveness in response to atmospheric humidity. Different species of spiders “tune” water uptake to match the humidity of their foraging environments, achieving a similar “universal” viscosity that optimizes tradeoffs in spreading versus cohesive bulk energy needed to enhance adhesion. Too much water lowers viscosity so that the glue spreads well, but cohesive failure occurs easily, generating poor adhesion. However, the optimal viscosity model of adhesion is based on experiments using smooth glass. Here we test the hypothesis that a less viscous, “over-lubricated” glue, which shows poor adhesion on smooth glass, will be stickier on hairy insects because of its greater ability to spread across three-dimensional rough surfaces. We ran adhesion tests of the furrow spider (Larinioides cornutus (Clerck, 1757)) viscid silk on honey bee (Apis mellifera) thorax, with and without hairs, in either high or medium humidity. Our results show that “over-lubricated” glue increases adhesion on hairy surfaces, performing equally as well as an optimally viscous glue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.