We are currently in the midst of the most aggressive and fulminating outbreak of Ebola-related disease, commonly referred to as “Ebola”, ever recorded. In less than a year, the Ebola virus (EBOV, Zaire ebolavirus species) has infected over 10,000 people, indiscriminately of gender or age, with a fatality rate of about 50%. Whereas at its onset this Ebola outbreak was limited to three countries in West Africa (Guinea, where it was first reported in late March 2014, Liberia, where it has been most rampant in its capital city, Monrovia and other metropolitan cities, and Sierra Leone), cases were later reported in Nigeria, Mali and Senegal, as well as in Western Europe (i.e., Madrid, Spain) and the US (i.e., Dallas, Texas; New York City) by late October 2014. World and US health agencies declared that the current Ebola virus disease (EVD) outbreak has a strong likelihood of growing exponentially across the world before an effective vaccine, treatment or cure can be developed, tested, validated and distributed widely. In the meantime, the spread of the disease may rapidly evolve from an epidemics to a full-blown pandemic. The scientific and healthcare communities actively research and define an emerging kaleidoscope of knowledge about critical translational research parameters, including the virology of EBOV, the molecular biomarkers of the pathological manifestations of EVD, putative central nervous system involvement in EVD, and the cellular immune surveillance to EBOV, patient-centered anthropological and societal parameters of EVD, as well as translational effectiveness about novel putative patient-targeted vaccine and pharmaceutical interventions, which hold strong promise, if not hope, to curb this and future Ebola outbreaks. This work reviews and discusses the principal known facts about EBOV and EVD, and certain among the most interesting ongoing or future avenues of research in the field, including vaccination programs for the wild animal vectors of the virus and the disease from global translational science perspective.
Viral cellular immune surveillance is a dynamic and fluid system that is driven by finely regulated cellular processes including cytokines and other factors locally in the microenvironment and systemically throughout the body. It is questionable as to what extent the central nervous system (CNS) is an immune-privileged organ protected by the blood-brain barrier (BBB). Recent evidence suggests converging pathways through which viral infection, and its associated immune surveillance processes, may alter the integrity of the blood-brain barrier, and lead to inflammation, swelling of the brain parenchyma and associated neurological syndromes. Here, we expand upon the recent “gateway theory”, by which viral infection and other immune activation states may disrupt the specialized tight junctions of the BBB endothelium making it permeable to immune cells and factors. The model we outline here builds upon the proposition that this process may actually be initiated by cytokines of the IL-17 family, and recognizing the intimate balance between TH17 and TH9 cytokine profiles systemically. We argue that immune surveillance events, in response to viruses such as the Human Immunodeficiency Virus (HIV), cause a TH17/TH9 induced gateway through blood brain barrier, and thus lead to characteristic neuroimmune pathology. It is possible and even probable that the novel TH17/TH9 induced gateway, which we describe here, opens as a consequence of any state of immune activation and sustained chronic inflammation, whether associated with viral infection or any other cause of peripheral or central neuroinflammation. This view could lead to new, timely and critical patient-centered therapies for patients with neuroimmune pathologies across a variety of etiologies.AbbreviationsBBB - blood brain barrier, BDV - Borna disease virus, CARD - caspase activation and recruitment domains, CD - clusters of differentiation, CNS - central nervous system, DAMP - damage-associated molecular patterns, DENV - Dengue virus, EBOV - Ebola virus, ESCRT - endosomal sorting complex required for transport-I, HepC - Hepatitis C virus, HIV - human immunodeficiency virus, IFN - interferon, ILn - interleukin-n, IRF-n - interferon regulatory factor-n, MAVS - mitochondrial antiviral-signaling, MBGV - Marburg virus, M-CSF - macrophage colony-stimulating factor, MCP-1 - monocyte chemotactic protein 1 (aka CCL2), MHC - major histocompatibility complex, MIP-α β - macrophage inflammatory protein-1 α β (aka CCL3 & CCL4), MIF - macrophage migration inhibitory factor, NVE - Nipah virus encephalitis, NK - natural killer cell, NLR - NLR, NOD - like receptor, NOD - nucleotide oligomerization domain, PAMP - pathogen-associated molecular patterns, PtdIns - phosphoinositides, PV - Poliovirus, RIG-I - retinoic acid-inducible gene I, RIP - Receptor-interacting protein (RIP) kinase, RLR - RIG-I-like receptor, sICAM1 - soluble intracellular adhesion molecule 1, STAT-3 - signal tranducer and activator of transcription-3, sVCAM1 - soluble vascular cell adhesion molecule 1, TANK -...
Dengue, a leading cause of illness and death in the tropics and subtropics since the 1950׳s, is fast spreading in the Western hemisphere. Over 30% of the world׳s population is at risk for the mosquitoes that transmit any one of four related Dengue viruses (DENV). Infection induces lifetime protection to a particular serotype, but successive exposure to a different DENV increases the likelihood of severe form of dengue fever (DF), dengue hemorrhagic fever (DHF), or dengue shock syndrome (DSS). Prompt supportive treatment lowers the risk of developing the severe spectrum of Dengue-associated physiopathology. Vaccines are not available, and the most effective protective measure is to prevent mosquito bites. Here, we discuss selected aspects of the syndemic nature of Dengue, including its potential for pathologies of the central nervous system (CNS). We examine the fundamental mechanisms of cell-mediated and humoral immunity to viral infection in general, and the specific implications of these processes in the regulatory control of DENV infection, including DENV evasion from immune surveillance. In line with the emerging model of translational science in health care, which integrates translational research (viz., going from the patient to the bench and back to the patient) and translational effectiveness (viz., integrating and utilizing the best available evidence in clinical settings), we examine novel and timely evidence-based revisions of clinical practice guidelines critical in optimizing the management of DENV infection and Dengue pathologies. We examine the role of tele-medicine and stakeholder engagement in the contemporary model of patient centered, effectiveness-focused and evidence-based health care.AbbreviationsBBB - blood-brain barrier, CNS - central nervous system, DAMP - damage-associated molecular patterns, DENV - dengue virus, DF - dengue fever, DHF - dengue hemorrhagic fever, DSS - dengue shock syndrome, DALYs - isability adjusted life years, IFN-g - interferon-gamma, ILX - interleukinX, JAK/STAT - janus kinase (JAK) / Signal transducer and activator of transcription (STAT), LT - Escherichia coli heat-labile enterotoxin formulations deficient in GM1 binding by mutation (LT[G33D]), MCP-1 - monocyte chemotactic protein 1, M-CSF - macrophage colony-stimulating fact, MHC - major histocompatibility complex, MIF - macrophage migration inhibitory factor, [MIP-1]-α / -β - macrophage inflammatory protein-1 alpha and beta, mAb - monoclonal antibody, NS1 - non-structural protein 1 of dengue virus, NK - natural killer cells, PAMP - pathogen-associated molecular patterns, PBMC - peripheral blood mononuclear cells, TBF-b - transforming growth factor-beta, TNF-α - tumor necrosis-alpha, VHFs - virus hemorrhagic fevers, WHO - World Health Organization.
Modern health care in the field of Medicine, Dentistry and Nursing is grounded in fundamental philosophy and epistemology of translational science. Recently in the U.S major national initiatives have been implemented in the hope of closing the gaps that sometimes exist between the two fundamental components of translational science, the translational research and translational effectiveness. Subsequent to these initiatives, many improvements have been made; however, important bioethical issues and limitations do still exist that need to be addressed. One such issue is the stakeholder engagement and its assessment and validation. Federal, state and local organizations such as PCORI and AHRQ concur that the key to a better understanding of the relationship between translational research and translational effectiveness is the assessment of the extent to which stakeholders are actively engaged in the translational process of healthcare. The stakeholder engagement analysis identifies who the stakeholders are, maps their contribution and involvement, evaluates their priorities and opinions, and accesses their current knowledge base. This analysis however requires conceptualization and validation from the bioethics standpoint. Here, we examine the bioethical dilemma of stakeholder engagement analysis in the context of the person-environment fit (PE-fit) theoretical model. This model is an approach to quantifying stakeholder engagement analysis for the design of patient-targeted interventions. In our previous studies of Alzheimer patients, we have developed, validated and used a simple instrument based on the PE-fit model that can be adapted and utilized in a much less studied pathology as a clinical model that has a wide range of symptoms and manifestations, the temporomandibular joint disorders (TMD). The temporomandibular joint (TMJ) is the jaw joint endowed with sensory and motor innervations that project from within the central nervous system and its dysfunction can be manifested systemically in forms of movement disorders, and related pathological symptomatologies.Currently, there is limited reliable evidence available to fully understand the complexity of the various domains of translational effectiveness, particularly in the context of stakeholder engagement and its assessment, validation as well as the bioethical implications as they pertain to evidence-based, effectivness-focused and patient-centered care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.