Groundwater data-sets with pH and major cation–anion chemistry are widely available but data that include trace metals are much rarer. This paper examines two methods of data imputation to predict U concentrations using pH, major cations, anions and F in a data-set where some of the U concentrations are missing. The methods evaluated were self-organizing maps (SOM) and expectation maximization (EM). Evaluations were made using a groundwater data-set of 187 samples from NSW and Victoria, which contained a wide range of U concentrations up to 225 μg/l. Tests made by setting 25% and 50% of the U concentrations to missing showed that, at 25% missing, SOM gave reasonable estimates, identifying all the samples with higher U. EM did not clearly identify the higher samples. At 50% missing, neither method could accurately identify the higher U concentrations. Thus, imputation using samples with missing data included in the training data-set does not appear to be practical. However, a SOM pre-trained on a data-set with no missing U concentrations may be used to impute U concentrations for samples with 100% missing U data. Training using the original data-set and then imputing concentrations for a second set of 360 samples showed that the samples with higher measured U concentrations could generally be identified, but that other samples were also estimated to be U-rich. This method could substantially reduce the number of samples in a large data-set requiring further investigation.
The performance of imputation for U reflects the complex interaction of water chemistry, geology and mineralogy that actually determines the U concentrations. Imputation is a useful method for improving estimates of data statistics. SOM, through its model-free approach, is a useful addition to the numerical analysis toolbox for geochemists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.