The proton-pumping NADH:ubiquinone oxidoreductase (complex I) of Escherichia coli is composed of 13 different subunits. The corresponding genes are organized in the nuo-operon (from NADH:ubiquinone oxidoreductase) at min 51 of the E. coli chromosome. To study the structure and function of this complex enzyme, a suitable purification protocol yielding sufficient amount of a stable protein is needed. Here, we report the overproduction of complex I in E. coli and a novel isolation procedure of the complex. Overexpression of the nuo-operon on the chromosome was achieved by replacing its 5'-promotor region with the phage-T7 RNA polymerase promotor and by expressing the genes with the T7 RNA polymerase coded on an inducible plasmid. It is shown by means of enzymatic activity and EPR spectroscopy of cytoplasmic membranes that complex I is overproduced 4-fold after induction. Complex I was isolated by chromatographic steps performed in the presence of dodecyl maltoside. The preparation comprises all subunits and known cofactors and exhibits a high enzymatic activity and inhibitor sensitivity. Due to its stability over a wide pH range and at very high salt concentrations, this preparation is well suited for structural investigations.
The proton-pumping NADH:ubiquinone oxidoreductase, also called respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. One FMN and up to 9 iron-sulfur (Fe/S) clusters participate in the redox reaction. There is discussion that the EPR-detectable Fe/S cluster N2 is involved in proton pumping. However, the assignment of this cluster to a distinct subunit of the complex as well as the number of Fe/S clusters giving rise to the EPR signal are still under debate. Complex I from Escherichia coli consists of 13 polypetides called NuoA to N. Either subunit NuoB or NuoI could harbor Fe/S cluster N2. Whereas NuoB contains a unique motif for the binding of one Fe/S cluster, NuoI contains a typical ferredoxin motif for the binding of two Fe/S clusters. Individual mutation of all four conserved cysteine residues in NuoB resulted in a loss of complex I activity and of the EPR signal of N2 in the cytoplasmic membrane as well as in the isolated complex. Individual mutations of all eight conserved cysteine residues of NuoI revealed a variable phenotype. Whereas cluster N2 was lost in most NuoI mutants, it was still present in the cytoplasmic membranes of the mutants NuoI C63A and NuoI C102A. N2 was also detected in the complex isolated from the mutant NuoI C102A. From this we conclude that the Fe/S cluster N2 is located on subunit NuoB.
The proton-pumping NADH:ubiquinone oxidoreductase is the first complex in the respiratory chains of many purple bacteria and of mitochondria of most eucaryotes. The bacterial complex consists of 14 different subunits. The mitochondrial complex contains at least 29 additional proteins that do not directly participate in electron transfer and proton translocation. We analysed electron micrographs of isolated and negatively stained complex I particles from Escherichia coli and Neurospora crassa and obtained three-dimensional models of both complexes at medium resolution. Both have the same L-shaped overall structure with a peripheral arm protruding into the aqueous phase and a membrane arm extending into the membrane. The two arms of the bacterial complex are only slightly shorter than those of the mitochondrial complex although the protein mass of the former is only half of that of the latter. The presence of a novel redox group in the membrane arm of the complex is discussed. This group has been detected in the N. crassa complex by means of UV-visible spectroscopy. After reduction with an excess of NADH and reoxidation by the lactate dehydrogenase reaction, a reduced-minus-oxidized difference spectrum was obtained that cannot be attributed to the known cofactors flavin mononucleotide (FMN) and the FeS clusters N1, N2, N3 and N4. Due to its positive midpoint potential the novel group is believed to transfer electrons from the FeS clusters to ubiquinone. Its role in proton translocation is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.