INTRODUCTION AND OBJECTIVE:Kidney disorders can cause essential hypertension, which can subsequently cause renal disease. High blood pressure is also common among those with chronic kidney disease; moreover, it is a well-known risk factor for a more rapid progression to kidney failure. Because hypertension and kidney function are closely linked, the present study aimed to observe the beneficial effects of low-intensity physical activity on structural and ultrastructural renal morphology and blood pressure in normotensive and spontaneously hypertensive rats.METHOD:Male Wistar-Kyoto rats and spontaneously hypertensive rats were randomly allocated into four groups: sedentary or exercised Wistar-Kyoto and sedentary or exercised spontaneously hypertensive rats. The exercise lasted 20 weeks and consisted of treadmill training for 1 hour/day, 5 days/week.RESULTS:The exercised, spontaneously hypertensive rats showed a significant blood pressure reduction of 26%. The body masses of the Wistar-Kyoto and spontaneously hypertensive strains were significantly different. There were improvements in some of the renal structures of the animals treated with physical activity: (i) the interdigitations of the proximal and distal convoluted tubules; (ii) the basal membrane of the proximal and distal convoluted tubules; and (iii) in the basal membrane, slit diaphragm and pedicels of the glomerular filtration barrier. The spontaneously hypertensive rats also showed a decreased expression of connexin-43.CONCLUSION:Physical exercise could be a therapeutic tool for improving kidney ultrastructure and, consequently, renal function in hypertensive individuals.
Background:Natural products might alter the labeling of blood constituents with technetium-99m (99mTc) and these results may be correlated with modifications of the shape of the red blood cells (RBC). The biodistribution of radiopharmaceuticals can be also altered.Objective:This investigation aimed to determine biological effects of an aqueous extract of chamomile (CE).Materials and Methods:To study the effect of the CE on the labeling of blood constituents with 99mTc, in vitro and in vivo assays were performed. The effect of the CE on the morphology of RBC was observed under light microscope. The images were acquired, processed, and the perimeter/area ratio of the RBC determined. To analyze the effect of the CE on biodistribution of the sodium pertechnetate (Na99mTcO4) in Wistar rats, these animals were treated or not with a CE. Na99mTcO4 was injected, the rats were sacrificed, the organs were removed, weighted and percentage of radioactivity/gram calculated.Result:In the in vitro experiment, the radioactivity on blood cells compartment and on insoluble fractions of plasma was diminished. The shape and the perimeter/area ratio of the RBC were altered in in vitro assays. An increase of the percentage of radioactivity of Na99mTcO4 was observed in stomach after in vivo treatment.Conclusion:These results could be due to substances of the CE or by the products of the metabolism of this extract in the animal organism. These findings are examples of drug interaction with a radiopharmaceutical, which could lead to misdiagnosis in clinical practice with unexpected consequences.
This work evaluates effects of the sweetener with sucralose on the labeling of blood constituents with technetium-99m (99mTc), on the morphology of red blood cells (RBC) and on the biodistribution of sodium pertechnetate in Wistar rats. Animals were treated with sweetener for 8 days. Blood samples were withdrawn and the assay of labeling of blood constituents with 99mTc was performed. Blood cells (BC) and plasma (P) were isolated. Aliquots of BC and P were also precipitated, soluble and insoluble fractions separated. The radioactivity in each fraction was counted and percentage of incorporated radioactivity (%ATI) determined. Blood smears were prepared, fixed, stained and the qualitative and quantitative morphology of the RBC was evaluated under optical microscopy. In biodistribution experiments, sodium pertechnetate was administrated, organs and tissues isolated, radioactivity was counted and percentage of incorporated radioactivity per gram (%ATI/g) determined. The data showed no significant alterations in %ATI, morphology of RBC and in %ATI/g in the studied organs.
Neste estudo foram avaliados efeitos do adoçante com sucralose na marcação de constituintes sangüíneos com 99mTc, na morfologia de hemácias e na biodistribuição do pertecnetato de sódio em ratos Wistar. Animais foram tratados com adoçante durante 8 dias. Amostras de sangue foram retiradas e a marcação de constituintes sangüíneos com 99mTc foi realizada. Células sangüíneas (CS) e plasma (P) foram isolados. Alíquotas de CS e P foram precipitadas, frações insolúvel e solúvel foram separadas. A radioatividade em cada fração foi contada e o percentual de radioatividade incorporada (%ATI), determinado. Distensões sangüíneas foram preparadas, fixadas, coradas e análise morfológica, qualitativa e quantitativa, de hemácias foi avaliada sob microscopia óptica. Nos experimentos de biodistribuição, pertecnetato de sódio foi administrado, órgãos e tecidos isolados, a radioatividade contada e o percentual de radioatividade incorporada por grama (%ATI/g), determinada. Os dados sugerem que não houve alterações significativas no %ATI, morfologia de hemácias e no %ATI/g
The incidence of chronic renal diseases is increasing worldwide, and there is a great need to identify therapies capable of arresting or reducing disease progression. The current treatment of chronic nephropathies is limited to angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, but increasing clinical and experimental evidence suggests that statins could play a therapeutic role. Ultrastructural studies have shown the presence of gap junctions within all the cells of the glomerulus and podocytes have been found to contain primarily connexin-43. The present study aims to observe the beneficial effects of rosuvastatin on structural and ultrastructural renal morphology and on glomerular connexin-43 expression in normotensive rats and spontaneously hypertensive rats (SHR). Rats were randomly allocated into four groups: WKY-C: normotensive animals no receiving rosuvastatin; WKY-ROS: normotensive animals receiving rosuvastatin; SHR-C: hypertensive animals no receiving rosuvastatin; SHR-ROS: hypertensive animals receiving rosuvastatin. Our results show no differences in blood urea, creatinine, uric acid and creatine phosphokinase levels between the groups, however, there was an decreasing of 24-h protein excretion in SHR-ROS. Capsular area in SHR-ROS was decreased, however, there was no alteration in urinary space. By transmission electron microscopy the slit diaphragm and podocyte foot processes were more preserved in SHR-ROS. By scanning electron microscopy the podocyte foot processes were more preserved in SHR-ROS. Increased connexin-43 immunofluorescence was observed in glomeruli of WKY-ROS and SHR-ROS. In conclusion, we hypothesize that renal pleiotropic effect of rosuvastatin can be a therapeutic tool for improving kidney ultrastructure and, consequently, renal function in hypertensive individuals.
We investigated whether physical exercise can affect platelet L-arginine - nitric oxide pathway in spontaneously hypertensive rats (SHR). Sixteen male SHR and 16 Wistar Kyoto rats (WKY) were divided among exercise (EX) and sedentary (SED) groups. After 20 weeks of treadmill training, systolic blood pressure (mm Hg) was significantly lower in exercised spontaneously hypertensive rats (SHR/EX; 138 ± 8) than in sedentary spontaneously hypertensive rats (SHR/SED; 214 ± 9). Exercise significantly increased platelet L-arginine transport (pmol L-arginine·(10(9) cells)(-1)·min(-1)), assessed by incubation with L-[(3)H]-arginine, in both WKY (SED, 0.196 ± 0.054 compared with EX, 0.531 ± 0.052) and SHR (SED, 0.346 ± 0.076 compared with EX, 0.600 ± 0.049). Nitric oxide synthase (NOS) activity (pmol L-citrulline·(10(8) cells)(-1)), measured by the conversion of L-[(3)H]-arginine to L-[(3)H]-citrulline, was significantly increased in SHR/EX (0.072 ± 0.007) compared with SHR/SED (0.038 ± 0.007), but no changes were observed in WKY. The iNOS and eNOS protein levels assessed by Western blot were not affected by exercise. This upregulation of the platelet L-arginine-NO pathway may attenuate the risk of thromboembolic events, supporting the role of exercise in hypertension management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.