Flow control mechanisms in Network-on-Chip (NoC) architectures are critical for fast packet propagation across the network and for low idling of network resources. Buffer management and allocation are fundamental tasks of each flow control scheme. Buffered flow control is the focus of this work. We consider alternative schemes (STALL/GO, T-Error, ACK/NACK) for buffer and channel bandwidth allocation in presence of pipelined switch-to-switch links. These protocols provide varying degrees of fault tolerance support, resulting in different area and power tradeoffs. Our analysis is aimed at determining the overhead of such support when running in error-free environments, which are the typical operating mode. Implementation in the xpipes NoC architecture and functional simulation by means of a virtual platform allowed us to capture application perceived performance, thus providing guidelines for NoC designers
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.