The silicon-based microelectronics industry is rapidly approaching a point where device fabrication can no longer be simply scaled to progressively smaller sizes. Technological decisions must now be made that will substantially alter the directions along which silicon devices continue to develop. One such challenge is the need for higher permittivity dielectrics to replace silicon dioxide, the properties of which have hitherto been instrumental to the industry's success. Considerable efforts have already been made to develop replacement dielectrics for dynamic random-access memories. These developments serve to illustrate the magnitude of the now urgent problem of identifying alternatives to silicon dioxide for the gate dielectric in logic devices, such as the ubiquitous field-effect transistor.
The temperature- and field-dependent permittivities of fiber-textured Ba0.7Sr0.3TiO3 thin films grown by liquid-source metalorganic chemical vapor deposition were investigated as a function of film thickness. These films display a nonlinear dielectric response under conditions representative of those encountered in dynamic random access memories or other integrated capacitor applications. This behavior has the exact form expected for a classical nonlinear, nonhysteretic dielectric, as described in terms of a power series expansion of the free energy in the polarization as in the Landau–Ginzburg–Devonshire approach. Curie–Weiss-like behavior is exhibited above the bulk Curie point (∼300 K), although the ferroelectric phase transition appears frustrated. Small-signal capacitance measurements of films with different thicknesses (24–160 nm) indicate that only the first term in the power series expansion varies significantly with film thickness or temperature. Possible origins for this thickness dependence are discussed.
Kingon, A. I.; Nemanich, R. J.; and Cross, J. S., "Direct studies of domain switching dynamics in thin film ferroelectric capacitors" (2005). Alexei Gruverman Publications. 16.
An atomic force microscope (AFM) is used to measure the magnitude of the effective longitudinal piezoelectric constant (d33) of thin films. Measurements are performed with a conducting diamond AFM tip in contact with a top electrode. The interaction between the tip and electric field present is a potentially large source of error that is eliminated through the use of this configuration and the conducting diamond tips. Measurements yielded reasonable piezoelectric constants of X-cut single-crystal quartz, thin film ZnO, and nonpiezoelectric SiO2 thin films.
Nemanich, R. J.; Kingon, A.; Gruverman, Alexei; Kalinin, Sergei V.; Terabe, K.; Liu, X. Y.; and Kitamura, K., "Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy" (2005). Alexei Gruverman Publications. 17.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.