Solidification of a chitosan-glycerol phosphate/blood implant in microfracture defects improved cartilage repair compared with microfracture alone by increasing the amount of tissue and improving its biochemical composition and cellular organization.
Chitosan-GP/blood implants applied in conjunction with drilling, compared to drilling alone, elicited a more hyaline and integrated repair tissue associated with a porous subchondral bone replete with blood vessels. Concomitant regeneration of a vascularized bone plate during cartilage repair could provide progenitors, anabolic factors and nutrients that aid in the formation of hyaline cartilage.
Meniscus injury is a frequently encountered clinical orthopedic issue and is epidemiologically correlated to osteoarthritis. The development of new treatments for meniscus injury is intimately related to the appropriateness of animal models for their investigation. The purpose of this study was to structurally compare human menisci to sheep and rabbit menisci to generate pertinent animal models for meniscus repair. Menisci were analyzed histologically, immunohistochemically, and by environmental scanning electron microscopy (ESEM). In all species, collagen I appeared throughout most menisci, but was absent from the inner portion of the tip in some samples. Collagen II was present throughout the inner main meniscal body, while collagen VI was found in pericellular and perivascular regions. The glycosaminoglycan-rich inner portion of menisci was greater in area for rabbit and sheep compared to human. Cells were rounded in central regions and more fusiform at the surface, with rabbit being more cellular than sheep and human. Vascular penetration in rabbit was confined to the very outermost region (1% of meniscus length), while vessels penetrated deeper into sheep and human menisci (11-15%). ESEM revealed a lamellar collagenous structure at the articulating surfaces of sheep and human menisci that was absent in rabbit. Taken together, these data suggest that the main structural features that will influence meniscus repair-cellularity, vascularity, collagen structure-are similar in sheep and human but significantly different in rabbit, motivating the development of ovine meniscus repair models. ß
These results suggest that the greater levels of provisional tissue vascularization and BR activity are main factors supporting improved cartilage repair when chitosan-GP/blood implants are applied to marrow-stimulated cartilage lesions.
Bone marrow stimulation does not reconstitute normal bone structure. Strategies that increase subchondral bone involvement in marrow stimulation could further benefit cartilage repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.